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INTRODUCTION

The MIT Laboratory for Computer Science (LCS) is an interdepartmental laboratory
.hose principal goal is research in computer science and engineering.

Founded in 1963 as Project MAC (for Multiple Access Computer and Machine Aided
Cognition), the Laboratory developed the Compatible Time Sharing System (CTSS),
one of the first time shared systems in the world, and Multics -- an improved time
shared system that introduced several new concepts. These two major developments
stimulated research activities in the application of on-line computing to such diverse
disciplines as engineering, architecture, mathematics, biology, medicine, library science
and management. Since that time, the Laboratory's pursuits expanded, leading to
pioneering research in Expert Systems, Computer Networks and Public Cryptography.
Today, the Laboratory's research spans a broad front of activities, grouped in four major
a re a s '

The first such area entitled ' owledge Based Systems involves making programs
more intelligent by capturing, representing, and using knowle ge which is specific to the
problem domain. Examples are the use of expert medical nowledge for assistance in
diagnosis carried out by the Clinical Decision Making Gl up; and the use of solid-state
circuit design knowledge for an expert VLSI (very lar( scale integration) design system
by the VLSI Design Project.

Research in the second and largest area, entitled Machines, Languages, and
Systemstrives to discover and understand computing systems at both the hardware
and softwa' levels that open new application areas and/or effect sizable improvements
in their ease f utilization and cost effectiveness. New research in this area includes the
architecture o very large multiprocessor machines (which tackle a single task, e.g.,
speech unders nding or weather analysis) by the Computation Structures, Real Time
Systems, Infor tion Mechanics, and Parallel Programming Research Groups.
Continuing researc includes the analysis and synthesis of languages and operating
systems for use in lar geographically distributed systems by the Distributed Systems
and Programming Metho Q1gy Groups. Finally, a key application involving the
matching of news and other cormmu t informat!on to individual needs, is pursued by
the Programming Systems Research Group.'

lo / io vo
The Laboratory's third principal area of research, entited- Theory involves exploration

and development of theoretical foundations in computer science. For example, the
Theory of Computation Group strives to understand ultimate limits in space and time
associated with various classes of algorithms, the semantics of programming languages
from both analytical and synthetic viewpoints; the logic of programs; the utility of
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randomness in computation; concurrent computation and the links between
mathematics and the privacy/au entication of computer-to-computer messages. Other
examples of theoretical work inv ve the study of distributed systems by the Theory of
Distributed Systems Research Gr p, and the development of effective algorithms for
VLSI design.

The fourth area of research, entitled Computers and People, *s concerned with the
Itnterrelationships between people and machines -- for example, he societal Impact of
computers carried out by the Societal Implications Research Gro p.

Some of the research highlights were as follows: t - 0

The Multiprocessor Emulation Facility (Prof. Arvind) was rendered operational and
was used for its intended purpose of emulating our Laboratory's Tagged-Token
Dataflow architecture. This facility, currently consisting of 38 Lisp Machines which are
interconnected by Laboratory designed high speed switches, was designed to be a
testbed for experimental study of various candidate multiprocessor architectures. The
results of these first emulations and related studies have led us to revise our designs for
a tagged dataflow machine, which we hope to build within the next three years. A
comprehensive software system has also been completed that translates functional
programs from the language Id to representations that can be emulated on the above
facility, simulated on an IBM 4381 computer, or executed on a dataflow machine.

In addition, we have also launched the design of two additional multiprocessor
projects: Project L (Prof. Ward) and CAM-7 (Dr. Toffoli). L is a new model of
computation characterized by (1) a large collection of finite state machines and state
representations with the property that programs written in object-oriented languages
(with concurrency) can be efficiently compiled into L structures; and (2) L structures can
be efficiently executed on a proposed hardware architecture associated with the L
project.

The CAM-7 architecture is a cellular automata machine that further extends our
previous architectures in this area. This machine will be able to update, in one screen
refresh interval, half-a-billion digital cells which are configured either as a cube or as a
plane. The state of each such cell is updated on the basis of the states of its physically
adjacent cells, as dictated by a set of rules that apply uniformly to all cells. We use
these cellu!ar automata structures for a variety of purposes including the development
of simple computational models that explain relatively complex physical phenomena.

In January 1986, we formally launched the LCS Common System research effort.
This ambitious project aims to facilitate the composition of programs across different
computational environments. For example, a program written in a Lisp machine
environment should be able to use a subprogram written in C under a Unix

- .2



INTRODUCTION

environment. We expect to complete the first definition of this system by year's end, at
which point we will begin gradual implementation of the Common System on the
Laboratory's 100 Lisp Machines and VAX-2 workstations.

An additional research activity launched in 1985-86 involves learning. This "Artificial
Awareness" program (Prof. Rivest), as it is called, strives to develop theories and
machines that can learn from their environments (and not from their programmers)
certain elementary notions. We believe that technological progress in architectures and
VLSI calls for a re-examination of learning theories and learning machine architectures
that may perhaps be implemented by "neural" types of machines.

Each year, the Laboratory holds its successful Distinguished Lecturer Series. During
the 1985-86 academic year presentations were given by Princeton University Professor
Robert E. Tarjan; Executive Director of Research at AT&T Bell Laboratories'
Communications Sciences Division, Robert W. Lucky; Cornell University Professor John
E. Hopcroft; Tufts University Professor of Philosophy Daniel C. Dennett; Chairman of
the Board of Microsoft, William H. Gates; and University of Kent at Canterbury
Professor David A. Turner.

The Laboratory had several personnel changes over the past year including the
addition of Mathematics Department Professors Baruch Awerbuch and David Shmoys,
and Dr. Leanord Heath as members of the Theory of Computation Group; the arrival of
Drs. Sharon Marshall, Stephen Garland, and Toby Bloom as research associates in the
Clinical Decision Making, Systematic Program Development, and Distributed Computer
Systems Groups, respectively; the departures of Professor Christopher Terman to
Symbolics, Inc., Dr. Andrea diSessa to Berkeley, Research Associate Dr. William
Ackerman to Apollo Computer, Research Associate Sylvia Weir to the MIT Arts, Media
& Technology Center, and Adjunct Professor Maurice V. Wilkes, who returned to his
home in the United Kingdom. Other changes included the appointments of Dr.
Tommaso Toffoli to head of the Information Mechanics Group, Dr. Andy Boughton as
Research Associate in the LCS Multiprocessor Emulation Facility, and Professor Robert
H. Halstead as head of the newly formed Parallel Programming Research Group.
Additionally, the Functional Languages and Architectures, and Computation Structures
Groups have merged, retaining the name of the latter.

Our Laboratory consisted of 331 members -- 44 faculty, and academic research staff,
30 visitors and visiting faculty, 62 professional and support staff, 105 graduate and 90

undergraduate students -- organized into 15 research groups. Laboratory research
during 1985-86 was funded by 12 governmental and industrial organizations, of which
the Defense Advanced Research Projects Agency of the Department of Defense
provided over half of the total research funds. In addition, the Laboratory employed 23

3
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undergraduates through the "Hacker Heaven" project which strives to identify promising
potential researchers in Computer Science.

Our technical results in 1985-86 were disseminated through publications in technical
literature, through Technical Reports (numbers 356 through 366) and through Technica!
Memoranda (numbers 291 through 309).

4
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CLINICAL DECISION MAKING

1. INTRODUCTION

Members of the Clinical Decision Making Group and their colleagues at Tufts/New
England Medical Center have been involved in a variety of research activities under the
auspices of our two main projects entitled An Artificial intelligence Approach to Clinical
Decision Making and A Program for the Management of Heart Failure. In the former
project, led by Prof. P. Szolovits and described in the following section, we are trying to
build a large coherent medical diagnosis and therapy system. The final section
describes how in the Heart Failure Project (sometimes referred to as CHF - Congestive
Heart Failure project) Dr. W. Long and his colleagues are developing a methodology
and tools for assisting the physician in reasoning about the diagnosis and management
of heart failure.

2. AN ARTIFICIAL INTELLIGENCE APPROACH TO CLINICAL
DECISION MAKING

The group is pursuing a multi-pronged attack on the technical difficulties of creating
intelligent medical reasoning programs within the computer. The fundamental
assumption of our current efforts, and thus the intellectual basis for our current work, is
that it is not sufficient to solve single independent technical problems. Instead, we are
attempting to build a large, coherent computer system that embeds a set of
complementary techniques and bodies of knowledge which will enable us and our
colleagues to build functioning medical diagnosis and therapy planning and monitoring
programs for a significant range of medical domains.

The principal research components of the above plan are:
1) to develop a knowledge representation language and a set of conceptual

primitives adequate to express the kinds of medical knowledge we need
to encode in the rest of the project;

2) to work out the particular methods of using such a language to encode the
particular knowledge of a small set of medically-interesting but narrow
specialties (initially, fluid/electrolyte balance, and coronary artery disease);

3) to implement and re-implement a variety of reasoning methods that our
own group and others have developed during the past decade for medical
problem solving, but now in such a way that they can all take advantage
of the uniform knowledge representation and share knowledge and
techniques;

4) to build a collection of exemplary cases and case analyses for use in
building and testing the reasoning programs;

5) to develop new means of reasoning with incomplete, or qualitative,
descriptions of physiologic processes, probabilities, utility structures, etc.;

7



CLINICAL DECISION MAKING

6) to apply artificial intelligence modeling methods to the clinical practice of
decision analysis; and

7) to integrate methods of decision analysis into Al-based reasoning
programs.

To address point 1, we have developed a good working relationship with the
community of computer scientists developing and using the NIKL knowledge
representation language (our initial choice of a base on which to build), acqUlred
working versions of that language, and conducted a number of small to medium-sized
experiments to determine how the facilities of that language support our needs. Prof.
R. Patil has implemented in NIKL several alternative versions of part of the knowledge
represented in the ABEL program, to explore how best to represent notions such as
causal relations and quantitative dependencies. Because many of these
representational issues have not previously been addressed by developers or users of
NIKL, we have found that considerable additional design will be needed to support
these capabilities elegantly and efficiently.

In the short term, both to learn more about how to best exploit NIKL and to address
point 2 in our plan, Prof. Patil and Dr. Long have created an intermediate
representation language that is mapped into NIKL but allows us to change how that
mapping is performed. Prof. Patil and Mr. I. Haemowitz have used this language to
implement almost all the non-procedural medical knowledge of ABEL, and Ms. T. Chow
has begun to build a text and graphics browsing tool to permit the exploration of the
knowledge base expressed in this form. Dr. F. Sonnenberg has taken the lead in
determining what are the principal issues in the representation of anatomical concepts,
Prof. Patil, Drs. J. Kassirer, R. Jayes and 0. Senyk have encoded an initial version of
the detailed knowledge of potassium metabolism, and Dr. R. Jayes has encoded
considerable detailed knowledge of the apparently relevant literature of coronary artery
disease and the drugs that are used in its treatment. Although we have not yet been
able to settle on the appropriate conceptual primitives, the intermediate language
approach has permitted us to make progress on the collection of knowledge.

We have done some exploration of how to import reasoning methods (point 3) such as
those from ABEL, EVOKER, the CHF (Congestive Heart Failure) program, and Internist,
and Mr. C. Kim implemented a Reconsider-like diagnosis program based on the AMA's
CMIT database. Because we have concentrated much of our efforts on how
approprialaly to represent knowledge, we have used this exploration more to guide that
representation effort rather than to build significant new programs. Based on some of
these methods, Dr. R. Kunstaetter, working with Dr. G. 0. Barnett at the Massachusetts
General Hospital and with Prof. Szolovits, completed a medical teaching program for
respiratory physiology that was tected by students in the Harvard Medical School New
'Pathway curriculum.

8



CLINICAL DECISION MAKING

Ms. P. Koton has begun to develop a program to index cases (point 4) previously
encountered by our programs and to pemit the use of case-based analogic reasoning.
Working with Dr. S. Pauker, she has collected approximately 20 cases to date, all in the
cardiac area. In addition, we have begun to catalog all the decision analysis consults
done by the Tufts/NEMC group (see below).

One area where significant new Al results are clearly necessary is in reasoning about
partially-described systems (point 5). Mr. E. Sacks has continued his development of
the Qualitative Mathematical Reasoning Program, extending it to begin to deal with non-
linear problems by making suitable linear approximations over limited regions. Mr.
M. Wellman has continued to apply similar methods to the analysis of the structure of
dependencies in probabilistic networks and among related health outcome descriptors.
Dr. L. Widman, collaborating with us remotely from Case, has developed some methods
of semi-quantitative analysis, as a more traditional, simulation-oriented alternative to
qualitative techniques. The fundamental approach here is to turn qualitative judgments
into quantitative estimates, use variants of simulation algorithms to predict the future
state of the world, and then reinterpret that state in term of the qualitative states of
interest.

We have concentrated heavily on developing new technical means of improving the
clinical use of decision analytic methods (point 6) for making difficult choices based on a
careful analysis of risks and benefits to the individual patient, employing the patient's
own preferences as a basis for determining formal utilities. One major aspect of this
work has been to develop a decision-tree critiquer (DTC) that comprehends typical
errors made in the application of these methods and suggests improvements in the
analysis. Mr. Wellman and Dr. Eckman have built an initial version of such a program,
and they have cooperated with Dr. S. Marshall in beginning the construction of a catalog
of analyses and errors, from which the expertise of the DTC will be derived. Dr.
Sonnenberg has also developed new methods of automatically revising context-
dependent variables in decision trees.

Though we have had extensive discussions of the appropriate means of including
probabilistic reasoning in Al programs, we have not yet made much progress on point 7.

We have discussed these issues with leading visiting researchers, and we have begun
to try to apply the qualitative reasoning methods we are developing to these problems.

Overall, we have made a constructive start on each of the long-term parts of our
research plan, and have made substantial progress on knowledge representation (1),
knowledge encoding (2), qualitative reasoning (5) and applying Al to decision analysis
(6).

A report on our research results and plans in each of the main research areas follows:

9
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2.1. Knowledge Representation

The central goal of our long-term research effort is to develop a modular, integrated
knowledge representation formalism in which all the medical and other real-world
knowledge relevant to medical decision-making can be encoded and manipulated. As
proposed, we have initially adopted the knowledge representation language NIKL (New
Implementation of KL-ONE) as the basis for our work. NIKL, being an experimental
geheral-purpose knowledge-representation tool, does not, of course, solve the problems
of how to represent medical knowledge in the computer. It does, however, provide a set
of epistemological primitives for forming descriptions, inferring when one description
necessarily subsumes another, and displaying the descriptions entered and their
interrelationships in both textual and graphical ways. Our efforts with NIKL have
centered on three tasks: (1) get a current version of it working in our environment, and
establish good working relationships with other major NIKL users and with developers of
the system at USC/ISI and at BBN; (2) design the appropriate mappings between
medical concepts we are interested in representing and the best ways of achieving
those representations in NIKL; and (3) where needed, design and implement extensions
to NIKL, in collaboration with other users, to reflect newly-recognized needs identified
by our use of the language.

During the past year we have successfully imported the NIKL knowledge
representation software and developed in-house expertise in its use for medical
knowledge representation. Under the leadership of Prof. Patil, we have translated much
of the ABEL (Acid-Base and Electrolyte Project) knowledge base into the NIKL
representation and are currently in the process of re-implementing the ABEL program
on the Lisp Machine, using the NIKL knowledge base. We have also developed a
prototype intermediate knowledge acquisition language for acquisition of medical
knowledge which is then translated into input language of the target knowledge
representation system (currently NIKL). The prototype language is implemented in a
table-driven fashion, allowing us to incrementally extend the input language as well as
to reorganize the representation of this knowledge in the target knowledge
representation system without the need for manually recoding the existing knowledge
base. We have used this intermediate knowledge acquisition language to develop a
model of the circulatory system adequate for both the Acid-Base and Electrolyte Project
and the Congerstive Heart Faihure nroict. We are culrrently in the pr.oess of de.vloping

a hierarchically organized knowledge base of medical terms and concepts to be shared
between these two projects. In addition, we have built graphical tools to permit the
interactive investigation of the content of the knowledge expressed in the acquisition
language, to permit physicians without extensive computer science training to examine
and modify that knowledge.

10



CLINICAL DECISION MAKING

Mr. S. Balzac has been working under the supervision of Prof. Patti in exploring and
implementing extensions to NIKL system motivated oy the needs of unified knowledge
base. We have found the representation of the PART/WHOLE relation in anatomical
models to be particularly problematic in the existing NIKL implementation. The problem
arises because the existing NIKL and its classification algorithm is based on the
assumption that all terms in the knowledge-base can be organized into a single type
hierarchy based on the subsumption relation. We have found this restriction
constraining in our domain. To overcome this difficulty, we have been engaged in
developing an extension to NIKL which will allow a number of different type hierarchies
and will allow a concept to be defined using more than one type hierarchy. We expect
that the first version of this program will be completed early in the fall and will be used to
implement a part of the knowledge-base that is cui rently expressed in the intermediate
representation language but which has no adequate translation into NIKL. The

adequacy of this proposal will be evaluated, and, if successful, we will make the
changes available to the broader NIKL community and adopt the new version as our
knowledge representation language.

We have also convened a national workshop on the use of NIKL, held at MIT in July
1986, bringing together 20 of the developers and principal users of this language, to
discuss our respective experiences with it, needed changes that have been identified
through actual use of the language, and experiences from other knowledge
representation projects that may be relevant to future NIKL development. Some of the

issues raised at this meeting, which will be the focus of additional work in the coming
year, include:

* the relationship between terminological reasoning and other forms of
inference, such as individuals, general assertions, defaults and
assumptions, etc.;

" the possibility of supporting not only definitional (necessary and sufficient)
conditions in the terminologic language but also weaker forms of
description, such as (perhaps) alternate sufficiency conditions no one of
which may be necessary;

" more complete support for inverse roles, including their handling by the
classifier;

*integration of the systems's assertional component with a more
conventional data base system, to support the handling of large bodies of
simple [actual knowledge;

*extension of the semantics of the language to deal with concepts such as
sets and sequences, part/whole relations, etc.; and

extension of the language to handle meta-level uescriptions, including self-
description.

11
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Our own interest in these issues is focused by the needs we have identified for support
of our medical representation work.

One of our high-priority tasks is to explore extensions to NIKL and development of
better tools for maintaining and extending the knowledge base in NIKL. Based on
experience gained in modeling medical knowledge in NIKL, we have identified a number
of shortcomings in the NIKL formalism. For example, in the anatomical domain we have
found that the mechanisms for describing PART/WHOLE relationships in NIKL is
inadequate (see above). In describing knowledge of diseases, we have noted that facts
such as "MI is more common among men than women" cannot be expressed in NIKL,
which has no present capability for making uncertain statements. As our knowledge
base has grown over the last few months to include over 1500 concepts, we have
discovered that the utilities provided in NIKL for interactive graphical display and
browsing are inadequate for dealing with large knowledge bases. We have proposed a
number of enhancements to NIKL to the NIKL development groups at ISI and BBN.
Over the next year we expect to continue to cooperate with these groups to extend the
NIKL language to overcome fundamental difficulties, and we expect ourselves to
develop those facilities (such as displaying/browsing through the causal networks and
patient-specific models) which are specific to the medical domain.

We plan to develop and extend the intermediate knowledge acquisition language and
other knowledge acquisition tools. Over the years, our group has been involved in a
number of projects using a variety of knowledge representation languages. As a result
we have been forced to develop knowledge bases for each project de novo, even when
part of the knowledge base needed for a new project was already present in existing
knowledge bases. To insulate us from this problem in the future, we have developed a
prototype intermediate language for describing medical knowledge. The prototype
language is implemented in a table-driven fashion allowing us to incrementally extend
the input language as well as to reorganize the representation of this knowledge in the
target knowledge representation system without the need for manually recoding the
existing knowledge base. As the work towards acquisition of medical knowledge
progresses and new constructs are identified, we will continue to extend the
intermediate language to include them. We also expect to develop an interface to
translate the internal structures of the intermediate language into simple English and
ultimately to provide a restricted subset of English as an input language which will
greatiy enhance the ability of clinical experts to participate directly in the acquisition of
medical knowledge.

In addition to the above efforts in knowledge acquisition, Mr. R. Granville has been
exploring a methodology called "stratification," a form of structured layering of
knowledge for building expert systems. The goal of this study, similar to the earlier
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goals of the "structured programming" school of traditional programmers, is to provide
principles that help assure modularity of large knowledge bases. His work is being
conducted in the context of a system that accepts pseudo-English descriptions of pieces
of knowledge and constructs both a linguistically-oriented case-frame representation
that is then used for generating explanations and a Lisp function that can be run to
apply the bit of expertise that was expressed.

2.2. Development of a Uniform Knowledge Base

Our work in developing new knowledge representation formalisms and our work in
actually encoding the relevant medical knowledge of the disease areas we are
interested in exploring must, innately, go hand-in-hand. We typically come to
appreciate the strengths and weaknesses of any particular representation method only
as we challenge it with actual knowledge to be encoded. Therefore, both as ,an
experimental vehicle to support our investigation of representation methods and as the
start of our long-term efforts to compile a usable, formally-represented knowledge base,
we have begun to encode medical knowledge in the fields of coronary artery disease
and acid-base and electrolyte disorders.

Dr. R. Jayes has been actively preparing summaries of the information needed to
accurate diagnosis and treatment in the coronary artery disease domains, including a
taxonomy of necessary anatomical and clinical concepts, as well as ancillary knowledge
such as the drugs ordinarily used in treatment, their characteristics, risks and benefits.
He has also reviewed the decision analysis literature in this field, to assure that
principles accepted there are incorporated in the knowledge base. An example of part
of this knowledge, encoded in the intermediate representation language we are using, is
shown in Figure 2-1.

Dr. Jayes, Prof. Patil and Mr. Haimowitz have also been creating a database for
modeling physiological events, diagnosis, and therapy in the acid-base and electrolyte
domain. Part of this knowledge has come from a review of the literature and part from a
translation of the knowledge base of the ABEL program into our new representation
formalism. The anatomic structure and connectivity of parts of the kidney are
represented in Figure 2-2. The causal structure of a portion of the ABEL domain is
shown at three levels of detail in Figure 2-3.

In each of the domains we have addressed, we have encountered some systematic
problems of representation that demand general solutions for representing medical
concepts. Unlike the totally general issues like part/whole relations mentioned above,
these problems are definitely medical in nature; thus we anticipate that solutions to
these will be relevant to a broad range of projects in our own work, but not likely to be
significant to more distant representation efforts.
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(c circulatory-circuit-through-lungs (s circulatory-circuit))
(c artery

(c pulmonary-trunk (s artery)
(part-of circulatory-circuit-through-lungs)
(input right-ventricle)
(output main-pulmonary-arteries))

(c main-pulmonary-artery (s artery)
(part-of circulatory-circuit-through-lungs)
(input pulmonary-trunk)
(output large-branches-of-pulmonary-artery))

(c large-branches-of-pulmonary-artery (s artery)
(part-of circulatory-circuit-through-lungs)
(input main-pulmonary-artery)
(output pulmonary-arterioles))

(c pulmonary-arterioles (s artery)
(part-of circulatory-circuit-through-lungs)
(input large-branches-of-pulmonary-artery)
(output pulmonary-capillaries)))

(c capillaries
(c pulmonary-capillaries (s capillaries)

(part-of circulatory-circuit-through-lungs)
(input pulmonary-arterioles)
(output pulmonary-venules)))

(c, vein
(c pulmonary-venu'ss (s vein)

(part-of circu.Latory-circuit-through-lungs)
(input pulmonary-capillaries)
(output large-branches-of-pulmonary-veins))

(c large-branches-of-pulmonary-veins (s vein)
(part-of circulatory-circuit-through-lungs)
(input pulmonary-venules)
(output pulmonary-veins))

(c pulmonary-veins (s vein)
(part-of circulatory-circuit-through-lungs)
(input large-branches-of-pulmonary-veins)
(output left-atrium)))

Figure 2-1: Portion of the Circulatory Mode! Concerning the Lungs.

One such problem area we ha,,e been exploring is the representation of anatomy.
The! major conclusion of this work so far is that at least the following aspects of
anatomical knowledge need tobe represented:

.w Mbrphology -- the size, shape, color and texture of objects.

*,Topology -- the relationships of objects in space.

* Internal Structure -- the subcomponents or composition of an anatomical
entity.
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(C kidney (s organ)
(c left-kidney)
(c right-kidney))

;; these are organ parts for kidney
(c organ-part

(c renal-interstitium (s organ-part)
(part-of kidney))

(c renal-cortex (s organ-part)
(part-of renal-interstitium))

(c renal-medula (s organ-part)
(part-of renal-interstitium))

(c renal-blood-vessel (s blood-vessel)
(c renal-arterie (s artery)

(input systemic-artery)
(output renal-vein))

(c renal-vein (s vein)
(input renal-arterie)
(output systemic-vein)))

(c nephron (s organ-part)
(part-of kidney))

(c tubule (s anatomical-conduit organ-part)
(part-of nephron)
(input glomerule)
(output collecting-duct))

(c proximal-tubule (s anatomical-conduit organ-part)
(part-of tubule)
(input glomerule)
(output loop-of-henle))

(c loop-of-henle (s anatomical-conduit organ-part)
(part-of tubule)
(input loop-of-henle)
(output distal-tubule))

(c distal-tubule (s anatomical-conduit organ-part)
(part-of tubule)
(input loop-of-henle)
(output collecting-duct))

(c glomerule (s organ-part)
(part-of nephron))

(c collecting-duct (s anatomical-conduit organ-part)
(part-of kidney)
(input tubule)))

Figure 2-2: Part of the Anatomical Model for the Kidney.
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Figure 2-3: Causal Chains for Acid-Base Disturbances.
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successively more detai~ed levels in the ABEL database. These diagrams were
produced from the NIKL encoding of this data, using causal structure -tracing utilities
developed as part of the project.
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" Taxonomy -- upward references specifying of which anatomical entity some
other entity is a part.

* Commonsense Kr.,)wledge -- this aspect includes "generic prototypes" of
which some given anatomical entity is an instance.

The taxonomy which organizes medical knowledge is a key to the usefulness of this
knowledge in medical diagnosis. The taxonomy spans a number of levels from the
most macroscopic, namely, the entire body, through regions, organ systems, tissues,
cells, organelles and ultimately molecules. Each medical reasoning task will address
primarily one of these levels, and the most clinically relevant knowledge available for a
particular task will also apply primarily to one level.

The taxonomic organization of anatomic structures lends itself to encoding in a
structured inheritance network such as NIKL. We have experimented with encoding
anatomical knowledge using NIKL. Future work planned includes exploration and
summarizing of the limitations of the use of NIKL_ to encode anatomical knowledge so as
to suggest representation schemes which will avoid these limitations.

A second generic medical representation issue that has arisen is the appropriate
treatment of multiple taxonomies. It has become clear from preliminary work done by
our research group and others that there is no single hierarchical scheme which is
capable of containing all of medical knowledge or of providing all of the necessary
inferential links from one piece of knowledge to the others. Work has focused on the
nature of these multiple hierarchies to define how many different types are possible,
how many different types are clinically relevant and how an inference scheme should
choose among them when formulating hypotheses. This work has so far revealed that
among the major hierarchies are included anatomical, etiologic, physiologic, and
temporal hierarchies. Each of these organizes available knowledge in different ways.
Most medical concepts fit into all of these hierarchies. Future work will concentrate on
constructing a scheme to encode medical knowledge in a multiple-based hierarchy to
explore the inferences which can be made from them.

In the coming year we expect to complete the representation of the circulation model
and the functional anatomy model as the first steps toward a unified medical knowledge
base of terms and concepts. A number of issues in this area still remain to be resolved.
For example, we need to develop representations for describing arterial shunts where
the blood can flow in either direction This is particularly difficult using symbol-level
structures in NIKL because they implicitly assume unidirectional connections. Similarly,
there are a number of anatomical structures which are patient-dependent (e.g., left vs.
right dominated coronary blood supply). Currently we do not have the capability of
describing these alternate models or selecting one of them for reasoning in a specific
case. In addition to overcoming these difficulties we will also be working on developing
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models for homeostatic processes relevant to ABEL project: the HC0 3-PaCO 2-pH
regulation, salt and water regulation, and potassium metabolism.

2.3. Importing Components of ZAisting Reasoning Systems

We plan to complete the new version of the ABEL program and enhance its medical
knowledge base beyond the current system. This will allow us to explore in more detail
the limitations of the ABEL program and provide us with ideas for redesign of Enhanced
ABEL system. By late next year we expect to begin the conceptual design of the new
ABEL system. There are a number of features of the new system, which have, already
emerged from past experience. (1) The new system will not maintain a rigid
stratification between the levels of detail throughout the knowledge base. This will allow
us to expand different parts of the PSM tc different levels of detail; opening those areas
where interaction among diseases must be resolved to great detail while onaintaining at
relatively shallow level, other areas, where the diagnostic reasoning is relatively straight
forward. (2) The process of proposing new hypotheses in ABEL is achieved through
causal propagation of unaccounted for findings. This process, although satisfactory, is
computationally quite expensive. For example, during diagnosis, each cycle of
hypothesis generation takes approximately five times more computation than revision in
the multi-level PSM to reflect the result of the diagnostic cycle. In the newer
implementation we expect to combine the heuristic hypothesis generation techniques
developed in PIP, INTERNIST/CADUCEUS projects to reduce this time considerably
thus making the overall program significantly more efficient.

In addition, we plan to bring into the system we are building a number of other
methods we and our colleagues have developed in other projects. In the case-based
reasoning efforts, we plan to use the methods developed independently by Dr. Long in
the CHF project. We also plan to build an EVOKER-like utility to provide a general PIP
or Internist-I style hypothesis evocation tool.

2.4. Representation and Organization of Case-Specific Knowledge

We have identified two top-level issues in representing knowledge about particular
patient cases to be dealt with by our system. One is simply the ability to represent what
is actually known about a natient in the same languare in which en-ral medcal facts
are expressed, so that it becomes possible to match descriptions of the individual
against prototypical cases. The other is the more difficult problem of organizing large
numbers of such individual case descriptions to permit intelligent retrieval of cases
based on features of interest and (ultimately) the possible use of analogic, case-based
reasoning to allow the system to recognize that an analysis of a previous case or set of
cases is highly relevant to the current case under consideration.
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The only problem we have identified in the first of these issues is that the NIKL

language does not have specific support at the moment for the representation of

individuals. Thus, although any concept can be marked as an individual, the intended
semantics of this marking is more that "this concept cal have only a single instance"

(e.g., "the president of IBM Corp.") rather than that the concept directly stands for a

particular entity in the real world (e.g., Joe Smith). A similar problem arises in the
characterization of roles. Because NIKL is intended to describe generic concepts, one

might restrict the age role of a person to be a number, or perhaps number less than
100, and it is difficult to store the actual value, rather than a descriptor, in the slot. This

problem will be resolved either in some appropriate general way by developing a

comprehensive facility for representing individuals in NIKL or by adopting some ad hoc

convention. In either case, we expect it not to be a difficult issue once the more general

medical knowledge representation issues are resolved.

The more difficult and interesting problem is that of organizing a large number of

cases in such a way that automatic indexing structures help to retrieve just the most

relevant cases when case-based analogic knowledge appears to be called for.

P. Koton has developed her doctoral research proposal around a new approach to this

problem. She plans to use an indexing scheme similar to that developed by Dr.

J. ,olodner of Georgia Tech in her work on memory structure. This approach involves

indexing cases by their salient features, and constantly reformulating a taxonomic

system in which cases that are most similar along one or another dimension are

grouped together and eventually define prototypes. The most important of Koton's

adaptation of this system is to introduce the causal explanations developed in past

cases as one of the most important features for indexing, in conirast to the more typical

methods that rely simply on similarity of surface appearance to determine closeness. In

addition, we plan to avoid some of the problems that have troubled this approach by

building a much more comprehensive index, permitting the selection of salience to be

made at retrieval, rather than indexing time.

2.5. Qualitative Methods of Reasoning

Mr. E. Sacks has worked on several aspects of his doctoral thesis project, qualitative

analysis of systems described in engineering terms. First, he has assessed the

available mathematical tools, the theories of linear and nonlinear differential equations.

In principle, the linear theory provides a complete analysis of all linear differential

equations, although in practice, computational difficulties may arise. The nonlinear

theory is very sketchy and difficult to apply. Next, he investigated how several

engineers analyze nonlinear systems. They appear almost always to reduce nonlinear

systems to piecewise-linear ones. Therefore, the program he is developing will take the

19



CLINICAL DECISION MAKING

same approach. So far, part of the linear systems analyzer and several utilities have
been written, including an algebraic constraint reasoner, an inequality solver and a
graph sketcher.

2.6. Integration of Al and Decision Analytic Methods

During the past year we have begun a major attack on the problems of how to utilize
decision analysis in clinical medicine by bringing Al techniques to bear in the
construction, evaluation and interpretation of decision analyses. We have also begun
the exploration of how best to use the insights from decision analysis in those parts of
Al decision-making that rely on quantitative judgments of likelihood and value. The Lab
has had a number of visitors (J. Pearl, P. Cheeseman), with whom we have pursued the
applicability of "standard" but extended Bayesian models, and we have pursued the
application of new qualitative mathematical reasoning techniques to problems of
incomplete and inexact knowledge of likelihoods and preferences.

Mr. M. Wellman has been one of those working on techniques for medical decision
making that integrate artificial intelligence and decision theory methodologies. His
accomplishments over the past year include the design of a knowledge representation
of health outcome descriptors to be used for automatically formulating decision models
from a large medical knowledge base, implementation of decision tree software for
Symbolics Lisp Machines that will evolve into a program that structurally analyzes and
critiques users' decision models (see below), and substantial improvements to an
algorithm for automatically selecting a multi-attribute utility decomposition given
independence conditions asserted in a knowledge base. In addition, he has developed
a qualitative algebra for probabilistic networks that provides for "structural" reasoning
about likelihoods, and therefore appears promising for planning under uncertainty.

2.7. Decision Tree Critiquer

One of the first concrete applications of Al technology to decision analysis is the
construction of a Decision Tree Critiquing (DTC) program. The construction of decision
analytic models is a non-trivial skill that requires much practice and experience. As
more medical personnel become interested in building decision tree models of their
own, there will develop an increasing need for systems which can interactively assist in
the construction of these medical decision trees. Toward this end, we have been
developing a new decision tree software environment that will attempt to critique user-
developed decision models both while they are being constructed and after their
completion.

Several types of knowledge are required for the program to offer sound and effective
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advice to the decision tree builder. It is our hypothesis that m.1ch about a decision tree
can be appreciated from a purely structural plane, independent of the medical domain
knowledge. Much is gained, as well, from an understanding of the kinds of mistakes
which are commonly cor mitted. The Clinical Decision Making service at Tufts New
England Medical Center has provided a rich source of experience, both in terms of the
principles of good model construction and in the observation of experienced tree
builders criticizing the many models presented by students rotating through the service.

Examples of purely structural considerations in tree construction are meaningful
symmetry among strategy branches, the exclusion of strategies consisting of tests
without risk, and the inclusion of information dependencies within the representation,
either via the explicit binding of arguments to parameters of a node or a parallel
representation graph of causal linkages. Probability issues include the automatic
calculation of Bayesian revisions based upon test results, prevalence data, and
sensitivity/specificity information, the calculation of the probability of various test results
at chance nodes, and the handling of conditional probabilities in serial chance nodes.
With respect to issues requiring medical domain knowledge, the "critiquer" needs, to
understand utility structures and the situations in which different types of metrics are
applicable, causal dependencies and the resultant linkages that must exist between like
parameters on multiple strategy branches, and information on disease prevalence and
test characteristics.

Work to date includes the design of a critiquing architecture, implementation of the
more standard decision tree software on the Lisp Machine, and documentation of many
of the issues in medical decision tree construction that we expect our critiquer to handle.
Over the next year we plan to define and implement a language for specifying critiquing
rules that will use the system's built-in structural analysis routines to recognize and
respond to decision tree anomalies. The system will be exercised substantially in both
developmental testing and routine use by the consult service. This use will provide for
systematic collection of examples of decision tree bugs for further refinement of the
critiquing knowledge.

Presently, the higher level modeling skills form the more "artistic and creative"
aspects of decision analysis. Work on the decision tree critiquer will help formalize this
process, removing some of the mystery while promoting the technique's greater
dissemination and availability.

Dr. Marshall, Dr. Eckman and Mr. Wellman have begun to catalog errors made by
beginning medical decision analysts. We are interested in errors in structuring trees,
reasoning about uncertairty and calculating with probabilities, describing outcomes, and
assigning utilities. Our motivation for developing such a catalog is two-fold. First, we
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expect that the catalog will be a rich set of material to use in teaching, and improving,
medical decision analysis. Second, we hope to generalize the material in the catalog to
further our understanding about how people acquire problem solving skills.

The material for the catalog is being collected at New England Medical Center
(NEMC). Three new fellows arrived in the Division of Clinical Decision Making on I July
1986 and they have begun to participate in the patient consultation service. Many of the
consults present problems that are amenable to decision analysis. Active consults are
presented formally semi-weekly and are discussed informally as needed. Since we
participate in the formal discussions, and many of the informal ones, as well, we have
ample opportunity to observe the Fellows' learning process.

The catalog will contain a short precis of each case (written by the medical fellow to
whom the consult has been assigned), together with not only a recommendation and
supporting analysis, but also documentation of preliminary analyses, usually with
several iterations, our observations of errors and comments. The development of the
catalog is facilitated by the DTC program that is being developed in our group. The
program allows us to structure and modify decision trees with a minimum of effort. DTC
also enables us to analyze trees and arrive at an optimal strategy based on the
maximization of expected utility.

In order to capture the structural knowledge necessary for the analysis of decision

trees, we developed a notation which creates a hierarchical ordering of node types:
decision, chance, and terminal. Nodes are specialized through A-KIND-OF links.
Treat-decisions, test-decisions, and strategy-decisions are all kinds of decisions. Test-
results, treatment-efficacies, physiologic-states, and complication-events are all kinds of
chance events. Each node type has certain associated tasks. Each physiologic-state
node, for instance, determines the influences of its different states upon downstream
events in the tree. It must also determine what the effect of "upstream" tests and
treatments may be on the distribution of states across that chance node. As a further
example, complication-event nodes must look "upstream" to find their associated test or
treatment (from which the complication arose), and also determine if any of the
"distinguished" complications (globally defined complications) such as death are
present. In a similar manner, each node type has tasks it must fulfill in being called.

In our work with applied decision analysis we often encounter the problem of revision

of context-dependent variables. An example of this is changing the probability of
disease based on the results of a diagnostic test for nodes of the tree "downstream"
from the test result. Faulty probability revisions are a very common cause of erroneous
decision analysis results and are very difficult to find and correct. Dr. Sonnenberg has
derived a method for checking to see that these probability expressions are correct, and
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an algorithm for deriving them. The algorithm requires delineation of an event space for
the clinical situation and specification of the dependencies among various events. The
methodology discussed here has been applied successfully to a real-life decision
analysis involving the generic policy issue of evaluating pulmonary disease in patients
suspected of having the Acquired Immune Deficiency Syndrome (AIDS). The event
space for this analysis is so complicated that derivation of the necessary probability
expressions could not be done without an algorithmic approach. Work on this real
clinical problem has enabled development of the techniques for generation of probability
expressions and verification of the result.

Development of DTC is continuing. Shortly, we expect that it will be able to critique
decision trees by offering the analyst suggestions for correcting errors or suspected
errors in structure and reasoning about uncertainty. The latter feature is expected to be
especially useful since beginning analysts, in particular, often have under-developed
intuition about probabilities. The development of DTC is intimately bound up with the
development of the catalog of errors since we hope DTC will be alert to frequently made
errors and be able to suggest corrections.

The aspect of automated decision tree construction on which Prof. Szolovits has

concentrated is developing mathematical expressions for revision of context-dependent
variables in a decision tree. One aspect of this is verification that a given expression
gives the correct result. Another aspect is the generation of the expressions. In simple
cases, this is a straightforward application of Bayes' rule. However, even experienced
decision analysts are familiar with performing such Bayesian revisions only for the
results of diagnostic tests. In other cases, such as observations of the clinical course of
patients during a period of empiric treatment, the method is much less straightforward.
Also, the classic formulation of Bayes' rule, as it is taught to physicians, considers a
binary outcome such as a positive versus a negative test result. When results are not
binary, the expressions, while still straightforward, become more complicated, and are
less familiar to most decision analysts. The most difficult situation of all is when
outcomes are not mutually exclusive. Bayes' rule cannot handle such a situation, but it
is frequently encountered in applied decision analysis.

In certain cases, all of these problems can be dealt with by expanding the decision
tree to the "finest grain" level, that is explicitly modeling the disaggregation of all events
which can occur. For example, consider a case in which the patient may or may not
have Disease X and there is an imperfect test for Disease X. There are four possible
outcomes; true positive, false positive, true negative and false negative. However, the
only observable event is whether or not the test is positive. If one has predetermined
that patients with a positive test will be treated and patients with a negative test will not
be treated, then the four terminal outcomes of the tree can be assigned in a
straightforward manner.
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The problem arises when the subsequent course has not been predetermined, and
there is an "embedded" decision node following the test result, for example, whether to
perform further testing. In this case, events cannot be disaggregated "upstream" to the
embedded decision node, because the knowledge of the actual diagnosis Is not
available to the decision maker. All that is known is the revised probability that patient
has the disease given the test result. Hence, the separation of patients into categories
must be handled entirely with probability revisions and the events can be disaggregated
into their terminal events only "downstream" from the embedded decision node.

In the course of performing an analysis which raised all of these issues, an algorithmic
approach was developed which enabled the generation of the necessary symbolic
expressions for probability revisions. The approach requires delineating an event space
for the clinical situation, that is, one which considers all of the clinically relevant
observable outcomes. The event space can be represented as a probability tree which
represents events occurring upstream to the point where the probability revision is
required. Instead of being concerned with utilities of outcomes, the focus is on counting
outcomes. The way in which the event space is constructed and the probabilities used
will be determined by the dependencies among various events, for example, the
dependency of a test result on the presence of disease. The structure of the event
space will also depend on which variable is being revised. Thus, there is not a single
event space which is needed, but several event spaces, all of which represent the same
information in different form. The necessary expressions are generated from the path
probabilities of the events under consideration.

The need for this approach was suggested in the course of a real applied decision
analysis of the strategies for evaluating pulmonary infiltrates in patients with the
Acquired Immune Deficiency Syndrome (AIDS). The event space for empiric treatment
in this clinical setting involves consideration of two sets of diagnoses which are not
mutually exclusive, and multiple diagnoses within one set. Furthermore, the observable
result during empiric therapy is not binary, but rather, involves three outcomes. The
expressions required for probability revision in this tree were so complex that they could
not be debugged without an algorithmic approach. This type of analysis requires far
more information than we specify in a decision tree, namely dependencies among
events. At the current state of the art in decision tree construction, such dependency
information is provided only implicitly in the form of binding expressions, if at all. It is
clear from the preceding discussion that this is somewhat backwards, because in
difficult cases, an explicit specification of event dependency is required first Needless
to say, in terms of communicating results, an explicit representation of dependencies is
far more clear than a complicated mathematical binding expression.

A verification algorithm was devised which established that the expressions resulting
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from the algorithmic approach were in fact correct. Basically, it involves establishing the

probabilities of all states prior to the probability revision, and then summing the
probabilities of the same states following the probability revision. The net probability of

each state has to be the same both before and after the revision. If it is not, the revision

is incorrect. This is equivalent to saying that performing the test and interpreting the
results cannot change the state of the world. This verification algorithm would be a

valuable adjunct to automated decision tree critiquing, a project which is well underway

by others in our group.

Work to be undertaken in the immediate future includes submission of the results of

the above-mentioned decision analysis to a major medical journal and submis 3ion of the

technical aspects of the analysis to the decision analytic literature. The technical

questions relate to at least three major categories; modeling empiric therapy, dealing
with embedded decision nodes, and revision of probabilities when events are multiple,

or not exclusive.

It seems to Prof. Szolovits at this stage of the work that the best way of specifying

dependencies among events is via an influence diagram. A second major area for
future work is developing a computer program which will be able to construct an
influence diagram from assumptions used for the analysis and will be able to use this

information to construct event spaces needed for the probability revisions. These event

spaces could then be used to generate symbolic probability expressions needed to
revise variables. The way in which this program would request information from the

user would be an ideal way of exploring issues in developing an interface for a decision

tree construction program. Such a program ideally would enable a naive user, one with

no decision analytic experience, to guide the construction of a correct decision tree
merely by specifying the elements of the clinical setting. The verification algorithm,

while simple in principle, is computationally costly and lends itself to automated support.

Another goal is to build such error checking into currently used decision tree building
software.

2.8. Planning Under Uncertainty

Our view of the problem of planning patient management is strongly influenced by the

domain realities of multiple, conflicting objectives in the presence of substantial
uncertainty. It is not surprising, then, that our work on a therapy planner is highly

related to our other efforts in using Al techniques to support decision-analytic modeling.

The planning project, part of Mr. Wellman's doctoral thesis research, considers plan
construction under uncertainty to be analogous to the formulation of a decision model (a
decision tree, for example). Option. under consideration are initially brought into the
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plan as decision nodes, and events important for prognosis or contingency planning are
integrated into a probabilistic model. The plan constructor proceeds in a cycle of
formulating, recognizing, and resolving tradeoffs.

Formulation consists of adding the medically relevant events and actions for
consideration, driven by the problem statement presented to the planner. The program
avoids generating everything in the knowledge base associated with the problem
(pOtentially all of medicine is somehow related to any problem) by focusing on
presenting details. That is, the planner only needs to consider the issues resulting from
the current patient's differences from cases with known solutions.

A "tradeoff" for our purposes is a decision that cannot be resolved with purely
qualitative information. For example, performing a costless informative test is not a
tradeoff because there are only benefits, while a diagnostic test with possible
complications does present a tradeoff. We have already developed a formalism and an
algorithm by which these kinds of tradeoffs can be readily recognized within a partial
decision model.

The nontrivial tradeoffs determine the focus of the next round of planning formulation
effort. Tradeoff areas are worked out in greater detail so that a dominance prover can
attempt to resolve the decision one way or the other. Procedures for determining
dominance will be based in part on our previous work in decision making from partial
utility specification. [1]

3. A PROGRAM FOR THE MANAGEMENT OF HEART FAILURE

The overall objective of this research is to develop a methodology and tools for
assisting the physician in reasoning about the diagnosis and management of disease,
particularly when causality, physiological relationships, and changes over time are
important to the reasoning process. The context for this research is the diagnosis and
management of heart failure, a problem which requires a thorough understanding of the
hemodynamic and physiological relationships of the cardiovascular system for effective
management. The emphasis of the early years of the project is on developing an
adequate representation for the physiological knowledge, developing the appropriate
physiological model for the domain, and developing the algorithms for reasoning about
the diagnostic and management problems of the patient.

The participants in this project include Dr. Long and Mr. Yeh at MIT and cardiologists
S. Naimi, M.G. Criscitiello, and S. Pauker at Tufts-New England Medical Center
Hospital. Until October we also had a cardiology fellow, Dr. S. Kurzrok, working with us.

During the past year we have started developing software that takes advantage of the
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Symbolics 3640 hardware. We have been working on physiological models that
incorporate the important parameters of both sides of the heart. We have developed a
new methodology for reasoning about the expected changes from a therapy. Finally,
we have developed a new interface for entering the patient data.

The most important progress over the past year has been the development of
methodology for reasoning about the changes expected from the application of a
therapy. Once the patient data has been entered into the program and used to
constrain the physiological representation of patient state and the diagnostic reasoning
has produced a causal representation of the disease state of the patient, the next task is
to suggest possible therapies with appropriate analysis. It is easy enough to find
therapies along the causal chains with potential to correct parts of a problem, but
therapies often have more than one action and even single actions have many
implications. The problem is to determine what the overall effect of the therapy is likely
to be, given the patient state.

The intuitively appealing strategy is to simulate the effects of the therapy. However
that would require considerable quantitative knowledge of the patient parameters and
the relationships between parameters. A qualitative simulation approach, on the other
hand, sacrifir-,s the ability to predict the outcome of opposing influences. Furthermore,
it is difficult with any simulation approach to determine the important assumptions that
produced the computed outcome.

The approach we have taken is based on the techniques of signal flow analysis. By
assuming that the system will reach a stable state after a therapy is given, the problem
becomes how to determine what the difference is between that stable state and the
state prior to therapy. Since there are different time periods over which different parts of
the cardiovascular system reach stability, it is necessary to simplify the system by
assuming that effects with long time constants have no effect during short time periods.
Thus, we can develop a picture of the system over different time periods by considering
the system to be stable with respect to effects having more rapid action than the time
period. The use of signal flow analysis also requires that the equations representing
parameter relationships be linear. Since many of the relationships are inherently non-
linear (e.g., the Frank-Starling relationship between end diastolic pressure and stroke
volume) and many are multiplicative, it is necessary to model the system as piece-wise
linear with the relationships dependent on the parameter values. With these
assumptions it is possible to apply Mason's general gain formula to determine the
relative changes in parameters in the model. This formula, however, obscures the
reasons for the predicted changes. We have developed an alternate formulation that
computes the gain incrementally from parameter to parameter, correcting for feedback
each time a new feedback path is encountered.
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There are several advantages to this new approach. First, since the contributions of
the various pathways between parameters are explicitly represented, it is possible to
explain the predictions in terms of the mechanisms most responsible for the change.
This allows the user to focus attention on the more important parameter values and
assumptions. Second, with the use of a number of computational techniques to
increase efficiency, it is possible to compute the changes implied by a therapy on all of
the parameters in the model in a few seconds, allowing effective comparison of
therapies and assumptions about patient state. Third, the method only requires
information about the state of parameters that will determine the strength of the links
between parameters --- the determinants of the non-linear relations. Thus, the system
can function without knowing all of the parameter states. Figure 2-4 shows the result of
the system computing the changes expected from a beta-blocker in a patient with
chronic angina. The letters at the bottom of the parameter nodes indicate the
parameter states and the arrows at the top indicate the computed changes. The
highlighted lines between beta state and myocardial ischemia are the three primary
pathways determined by the computation accounting for the predicted decrease in
tendency to have angina.

In addition to the development of this methodology for predicting change, we also
have spent considerable time developing the physiological parameter model, displayed
in Figure 2-4, which includes the right and left sides of the heart, the determinants of
myocardial ischemia, the sympathetic reflexes, and the renal determination of blood
volume. The form of the model is intended to correspond as much as possible to the
reasoning of cardiologists, in keeping with the thrust of the project. The relationships
between parameters in the model are formulas determining the link strengths from the
parameter values. The parameter values are scaled such that experiential values of
weak, moderate, and strong link values (indicated by +'s and -'s) correspond to 0.5, 1.0,
and 1.5. These have proven sufficient thus far in accounting for the behavior of the
therapies we have examined. To validate the model, we have compared its predictions
with drug data reported in the literature with good agreement. There is still much work
to be done on the midel as we compare its predictions with various disease states and
make additions and changes to appropriately model the diseases in the heart failure
domain.

Another task of the past year has been to start moving the software originally
developed on a PDP-10 over to the Symbolics 3640 Lisp Machine. Simply making the
code work on the Lisp Machine was done relatively quickly, but we are still in the
process of integrating the computational mechanisms into a system that takes
advantage of the graphic capabilities of the hardware. The first step in this effort was to
design a new input interface to take advantage of the mouse and menu capabilities of
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FicL~ro 2-4: Cardiovascular Model Showing Effects of a Beta-Blocker.

the system and Cut down on the need for the user to type. Part of the new input menu
is displayed in' Figure 2-5. The entries are divided into those with categorical values
and those with numeric values. The ,system supports arbitrary constraints among
categorical values and appropriate precision for numeric values. The system also
allows new entries to pop up when particular values are touched. For example, when
the user indicated that there were rales on the chest exam, the line requesting
characterization of the rales was inserted in the display. The entry of numeric
information is handled by .providing scales along whic.h. the_.. mo,,,se, can mo-'e to,, p,,.,,'"k th"',,

desired value. As the user moves along the scal,:, a running value is reported to aid in
finding the desired value. The layout and selection of the input information have gone
through a number of refinements, culminating in the present layout. The intention is to
capture the information pertinent to the heart failure without requiring the system to do
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reasoning that is not pertinent to the domain. From the examination of a number of
cases, it appears that the present layout captures the necessary data.

OPTHMOST AT IC-CHANGE UNAVAILABLE ASSENT ) 20 mmHgMoe.Nv

BLOOD-PRESSURE 120/70 1 1 1 1 J nn H90 50 199 159 209 259 399

HERT-RATE 90 I ~ bpn
50 1og 150 299 259 300

RESP 29 L....L......- 1 I I I Ipn
0 5 19 5! 29 2S53 Ae 3 4 _45 5e

TEMP 98.6 1- 1 1-----~ 1 J
96 98 lee 192 104

PHYSICAL-EXAM
APPEARANCE NAD 0SAPHURETIC ANXIOUS
IIEITAL-STATUS NORMAL CONFUSED OBTUNDED UNCONSCIOUS
JUGULAR-PULSE NORMAL. EST-JUGULAR-VENOUS-FRESSUPRE V-WAVE
PULSE NORMAL BOUNDING WEAK SLOW-RISE 81110 THRILL BRIUIT TRANSMIT TED-MURMUIR
AUSCULTATION (4ORMAL-EXAM 33 84 MURMUR PERICARDIAL-KNOCK-ORt-RUOS
APEX-PULSE NORMAL DISCRETE DIFFUSE LATERALLY -DISPLACED PARADOXICAL
CHEST CLEAR -TO- AUSCULTA TION-AND- PERCUSSION RALIES WHEEZES FRANK-PULMONARY -EDEMA

DECREASED -BREATH- SOUND$
RALES ABSENT BASILAN SCATTERED DIIFFUSE 112-WAY-UP
ABDOMEN NORNMAL-EXAM HEPATOSPENOMCOALY PU4.SATtLE-UIVER ASCITES IBRUITS PUJLSATILE-ABDOMINAL-MASS
EXTREMITIES NORMAL-EXAM CYANOSIS CLUBBING NAILDED-PALLOR PEDAL-EDEMA COOL/CLAMMY WARIM/DRY

LABORAORY-FINDWIGS
E G WNL NORMAL-SINUS SINUS-TACHYCARDIA SINUS -IRADYCARDIA ATMIAL-FIDRILLATION ATRIAL-FLUTTER

PAT CONDUCTION- DEFECT INFARCT ISCHEMIA LVH DIGITAUIS-EFIPECT P/CS
Ha 135 1 1 1 1 i... n~

109 105 119 115 129 125 139 1359 145 159le"'
K4.9 IL I J& I I Ineq#'1

2 3 4 5 6 7 a
BUM 29 1 -1 & I I I I n9.190n)

9 19 29 39 49 58 6L 1

CRERT 1.2 I_ OL I I I I I I I M9i.1190#Il
1 2 3 4 5 6 7 B 9 19

Ca 9. 1 AL I ng.'189n
6 7 8 9 18 11 12

CHR WNL CARDIOMEGALY DILATED-AORTA VALVULAR-CALCIUM PULMOIIINY-EDIM PNEUMONIA COPO,
PLEURAL-EFFUSION

BLOOD-GASES NORMAIL-OENATION HYPOXIA NORMAL-ACSIO-KTATUS AC110OSIS ALKALOSIS

Ex It '3Abort C] Mr eo nter another tin-e interval E

Figure 2-5: Patient Data Input Screen.

We have several objectives for the coming year. The first is to integrate the software
used in the angina system with the new software developed for predicting the changes
with thnerapy. T-he fiit i ip ii i iA! process was developing ihe new input system. T he
remaining steps include extending the diagnostic model to include the same parameters
as the therapy model, developing evidence interpretation rules to set the parameter
states from the new input list; extending the graphics system to display the diagnostic
reasoning in the same manner as the therapeutic reasoning; and transferring the
diagnostic capabilities.
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We also intend to extend the approach used for determining parameter values in the
angina system. At present, the findings are used as evidence for one or more
parameter values. The evidence for each parameter value is separately computed and
only those for which there is strong evidence are asserted. The logical implications of
those parameter values are asserted by the truth maintenance system and the rest of
the diagnostic reasoning requires assistance from the user. We plan to extend this
system by providing a probabilistic (or pseudo-probabilistic) mechanism for handling
relationships between parameter values that are less than definite. We have examined
various schemes for handling such relationships and find that the work on Bayesian
networks by J. Pearl and others is almost what we need to extend our system. There
are some problems that will have to be overcome, since our network does have loops in
it and the large number of splits and joins in the network may lead to computational
problems, but the techniques show promise.

There is still a considerable amount of work to be done in refining the physiological
model as used for therapy prediction. We need to extend it to cover the disease states
that cause or complicate heart failure in the adult. We will also continue the analysis of
the model to better understand the relationship between this type of model and the
more traditional physiological simulation models.

One major goal for the middle part of 1986 is to have the system ready for initial use
by students and staff in the CCU. This will mean developing d . A base facilities to keep
and recall the data they enter, a recording and comment facility to enable examination
and analysis of the use of the system, online documentation available from any part of
the program, and a general tying up of the many loose ends that are currently in the
system.
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COMMON SYSTEM

1. OVERVIEW

During the current year, we have started a new distributed systems project. This
project, the LCS Common System Project, has the goal of understanding how programs
written in different languages on different machines can invoke each other. The
motivation for this project is the observation that, both locally and in the world at large,
the number and variety of computing systems is increasing steadily. The incompatible
programming environments on these various machines create substantial barriers to
program interoperability. Within our community, we perceive serious problems in
building on the work of others, because the different program development
environments used within the Laboratory effectively partition us into isolated groups of

programmers.

The objective of this project is thus to permit a program to be invoked uniformly from
within all of our programming environments, independent of the particular language in
which that program was written. Within the Laboratory today, we see a number of
programming languages with vastly different characteristics: Lisp, with its rich runtime
environment; Clu and Argus, with their strong compile time type checking; and C, with
comparatively primitive semantics and development tools. Our specific goal is thus to
permit program invocation among any of these three language communities.

As a practical matter, if we are to provide universal program access, we must solve

two distinct problems; the invocation of a program by another program, and the
invocation of a program by a person at a display. In the one case, we must provide an
invocation mechanism which meshes together the distinctive semantics of the various
languages. In the case of human invocation, we must provide a model of a display
which masks the detailed physical characteristics of the display being used by that
particular person. In both cases, the issue involves the definition of high level standards
and abstractions. It is the definition of these standards which lies at the heart of the
project.

2. REMOTE INVOCATION

There are a number of ways in which a program written in one environment could be
made usable from another environment. For example, automatic translators could be
proposed, which Would tkti i Libp program and automatically produce an Argus or C
program with the same function. We reject this approach as totally unworkable. We
believe that, as a practical matter, programs must continue to execute within the native
environment in which they were developed. Since the various languages typically
execute on different hardware bases, cross language program invocation thus implies
invocation over a computing network. While the central focus of our research is multi-
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language invocation, rather than distributed invocation, the distributed aspect of our
languages has substantial performance implications for our overall design. In fact, the
distributed aspect of our system turns out to be almost as important as the multiple
languages in the impact on the system semantics.

At the heart of our system is an invocation model, which specifies the manner in which
one program may call another. There are several possible paradigms for invocation:
procedure call, co-routine, or message sending between parallel asynchronous
processes. We prefer the procedure call model, in which the calling program suspends
its execution at the time that it invokes the sub-routine, and waits for the return values
before continuing. This model matches the vast majority of inter-program
communication today, is relatively easy to understand, and compatible with the calling
semantics of almost all programming languages. However, the distributed nature of our
invocation mechanism raises performance problems which require a more complex
invocation paradigm. Based on the applications we have studied, we believe that we
must support, in addition to remote procedure call, the sending of reliable sequenced
one-way messages. Since one message can be sent without waiting for a previous
reply, the rate of message sending is no longer limited by the round trip delay across
the network, as it would be in the case of a remote procedure call. Instead, messages
can simply be sent as fast as the originator can generate them and the receiver can
process them. For some applications, such as the remote updating of a display, this
reduction in latency is critical to an acceptable level of performance. Our invocation
paradigm is thus remote procedure call augmented by reliable streams of messages.

When a program is to be exported within the Common System, so that it
invoked remotely, the Common System must construct a representation "t
program, which can be passed around within the system. We call this absti, A
port. Formally, a port has the following components: the location of the service (e.g.,
host address), the types of the arguments of the procedure, the types of the return
values of the procedure, and any exceptions or error conditions which the procedure
may return in place of its normal return values. As a practical matter, the type
information will be encoded in some efficient way, such as an index into some catalog of
definitions.

Our invocation model recognizes that it is important to gather groups of ports together
into an aggregate element. The most obvious reason fc: gathering together a number
of ports is to collect into one abstraction all of the operations performed by a particular
service. For example, a file system might have separate ports for opening a file,
reading to and writing from a file, and closing a file. It is useful to pass around this set
of ports as a unit. In fact, many representations of remote procedure invocation use the
word "port" to describe this aggregate, and use the word "operation" to describe the
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individual entry points of the service. (Although there are some distinctions between the
two representations, these do not appear to be of first importance.) Another reason for
gathering ports together into an aggregate is to identify a set of ports among which the
messages and procedure invocations are to be performed sequentially. If our
invocation semantics were a pure remote procedure call, this concept would not be
important, because procedure calls are by definition sequenced; the client cannot make
a second call until the first one has returned. However, once we permit messages
without replies, then we must think more carefully about sequencing. It is not sufficient
to say that the messages sent to one particular port must be sequenced; it may also be
important that messages sent to two ports arrive at those ports in the order in which the
client sent them. Imagine, for example, a program to manage a display, which exports
two sequential message ports, one to write a character to the display and the other to
change the character font. Messages to those two ports must be properly sequenced if
the characters are to be written to the display in the font intended by the client. Our
mechanism must thus support a mechanism for permitting several message streams to
be collectively sequenced, and this can best be represented by gathering together those
ports into some sort of aggregate structure.

We believe that arguments and return values from remote procedures are passed by
value. That is, our system would normally pass the object itself, rather than some sort
of referent or descriptor for the object. In this respect, our system differs from a
classical object-oriented distributed system, in which the objects along with their
operations are stored inside some site. In our system, we imagine data values being
passed from one machine to another, and manipulated at various sites using the native
programs which are available on that machine. We believe that the correct way to
characterize the values that are passed between procedures is to define a basic set of
data types and constructors (e.g., array and record) which can be combined together to
characterize the data type of each value. These sorts of data types are not precisely
the same as those which are traditionally used in typed data languages, because one
typically thinks of a data type as being characterized by the operations which can be
performed upon it, as opposed to its representation. For example, an integer is
characterized by the fact that it supports the traditional arithmetic operations, not by the
fact that it has a certain number of bits. In our system, however, we are not in a position
to constrain the operations which can be performed on the data item. We are thus
reduced to a primitive representation for type, which characterizes the data item by the
range of values which it can assume. To distinguish this form of type from other uses of
the word, we have coined the word c-type.

An essential component of the Common System is a catalog, which records

information about all of the programs that are available within the system. In particular,
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the catalog must record the c-type of all of the arguments and return values for every
port. The port value itself probably contains only an index to the catalog entry for the
collection of c-types. For those ports which are to be wideiy used over a long period of
time, the catalog will also provide a place for storing the port values away and retrieving

them based on some naming structure, such as a hierarchical name-space.

The final aspect of invocation semantics which we have designed to this point has to
do with the semantics of failures. It is generally believed that failures in distributed
systems are more likely than failures in centralized systems, due to the unreliability of
communications. Certainly, failures in distributed systems are harder to recover from,
because the damage that results from a failure occurs in an environment other than the
one in which the programmer is familiar. If manual reconstruction of state is necessary,
it may be very difficult for the programmer to master the necessary skills. For this
reason, we feel that it is very important to constrain the class of failures which can occur
as a part of invocation through the Common System. Our approach to control of
failures is to include within the Common System a coordinator for atomic transactions.
This means that services will be able to structure themselves around a transaction
model, in which operations either commit, in which case all of the results are visible, or
abort, in which case, none of the results are visible. The failure modes are thus very
simple to explain; a program either runs or does not, and there are no intermediate
results which may become visible as a result of an error.

Most of the language environments which participate in the Common System do not
have a native facility to implement atomic actions. However, we believe that by
providing a file system which provides atomic updates, we can capture most of the
important characteristics of a fully implemented transaction system without modifying
the native environments of those systems which do not already support this capability.

3. PROGRAM SPECIFICATION

Several steps are required in order to make a program written in one of the native
languages available through the Common System. First, of course, it is necessary that
the program be constructed taking into account capabilities which the Common System
provides. If the program requires an invocation model which is alien to the Common
System, then it will be impossible to market the program through those interfaces. The
seond st"p in installing -a program in the Common System is to describe tlie inierface

to the program in such a way that the Common System can construct a port value for it.
For this purpose, the Common System will provide a specification language in which
one describes the various ports which should exist for a service, and the types of the
argument and returr values. The Common System will use the specification in a

39



COMMON SYSTEM

number of ways. First, of course, the specification will permit the Common System to
construct a valid set of port values for the program. Second, the Common System will
use the specification to generate, in each of the languages native to the Common
System, an invocation stub. The invocation stub is the manifestation of this program in
each of the native languages in which the program is to be called. The invocation stub
will automatically prepare the arguments in the correct format, starting with values
stored in the representation of the native format. The Common System thus attempts to
provide the illusion that this remote program, written in some other language, is in fact
not very different from a local sub-routine written in the language of the caller. The
various specifications and invocation stubs are presumably stored in the catalog, along
with the port values and type definitions of the interface. It should thus be obvious that
the catalog is a fairly complex mechanism, central to the operation of the Common
System.

4. SERVICE INTERFACES

The Common System, as described so. far, contains a definition of invocation
semantics, a specification language, and a catalog. In fact, there are several other
important components to the Common System. In particular, there are certain services
which are central to the Common System, whose interface must be defined, using the
components of the Common System described so far. Some of these interfaces are
fairly obvious, for example, an interface to an atomic file system. A very important
interface, which we have not mentioned so far, is the interface to the display and input
devices of the human overseeing the computation. Within the Common System, we
assume that there will be several different computer workstations used as interface
devices for humans. At the present time, we are using Micro-Vaxes with a variety of
high resolution displays, Symbolics Lisp Machines, and TI Explorer Lisp Machines.
These machines differ, both in the physical details of their display, and in the low level
software provided for manipulation of the display. Essentially, all these have in common
is that they provide a high resolution all points addressable multi-window display. As
part of the Common System, therefore, it is necessary to define an abstract view of this
class of display which is capable of being mapped on to any one of these physical
devices.

At a low level, such a definition already exists: the X-Window System developed by
R. Scheifler of this laboratory and described elsewhere in the annual report. X provides
remote access to a rectangle of pixels on a display, and supports various manipulations
on this rectangle, such as displaying text or performing graphic actions. However, X is
a very low level interface, and does not address such high level issues as the user
interface for window management or command input. We have not yet addressed the
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question of how the Common System should deal with this higher level interface, but
this remains an important problem for future research.

Another interface which we wish to specify as a standard within the Common System
is an interface to a centralized authentication server. It is undesirable for each machine
within the Common System to maintain its own independent model of user
authentication. It is much more desirable if services marketed through the Common
System can turn to a common authentication service to validate the identity of their
clients. In order that this work smoothly, it is necessary that the interface to the
authentication service be defined early.

5. FUTURE PLANS

The Common System is conceived as a fairly large project which will involve a number
of faculty members for the next several years. This first year has been spent in high
level planning, and in specification of basic components of the system, such as the
invocation model. During the next six months, we expect to have a set of design
documents sufficient for us to begin early experimentation with remote invocation. We
expect the Common System to become available incrementally over the next two to
three years.
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1. INTRODUCTION

The Functional Languages and Architectures Group (FLA) was started in January
1981, splitting off from the Computation Structures Group (CSG) to continue research in
tagged-token dataflow architectures and functional languages. During this past year,
the old CSG was disbanded when its group leader, Professor J. Dennis, began a leave
of absence. Professor Dennis and the remaining members of the old CSG joined the
FLA group, led by Professor Arvind. FLA has taken on the name of its predecessor,
and thus the group organization has been restored to what it was in 1980.

A major thrust of the new Computation Structures Group is in two interrelated projects
-- the Multiprocessor Emulation Facility (MEF) and the Tagged-Token Dataflow
Machine. The goal of the MEF project is to construct a "sandbox" to facilitate research
and development in parallel architectures and languages. The most exciting
development of the year has been the execution of large dataflow programs on the 32-
processor MEF. Though much work is coninuing on the MEF front, the group is
concentrating on dataflow research, now that a reliable MEF foundatiot, is in operation.

The goal of the Tagged-Token Dataflow project is to demonstrate the feasibility of
general-purpose parallel machines by simulation and elation. In the past year we have
developed some major tools for dataflow research, enabling us to conduct several
experiments with large programs, significantly improving our understanding of dataflow
architectures.

We have also implemented a preliminary version of a Parallel Graph Reduction
Machine on the MEF. We hope to solidify the prototype and use it to study these
architectures in the coming year.

As part of the Tagged-Token Dataflow project, we have also been looking at several
issues related to language design and compilation, such as data structures, data types
and storage management, and the relationship and tradeoffs between data-driven and
demand-driven computation.

Professor Nikhil has begun studying the integ'ation of databases into functional
languages, based on a model that has a rich type structure and explicitly manages
histories of states.

In addition, several of Professor Dennis's students are pursuing different research
goaib. 8. r.ub/Lmdui has beeni expiuring the simulation of applicative inguages on the

Connection Machine [16]. G-R. Gao continues to investigate compilation of VAL into
efficient code for the static Dataflow Machine [9].

IBM has continued to support a small group of engineers assigned to CSG whose
function is to assist in the design and development of the packet switch. This group has
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demonstrated the first working pieces of the packet switch (the crossbar and the
scheduler/arbiter) using a cMOS gate array and MSI TTL components. The group has
also refined and verified the serial link protocol for the packet switch, and is well on the
way to releasing a 10,000 gate array which performs the serial receiver and transmitter
functions, as well as FIFO buffer control.

As a consequence of the MIT-IBM technical ieview meeting in the summer of 1985,
CSG initiated and hosted a series of seminars by prominent IBM people. The series,
entitled "Large and Complex Computer Systems in the Commercial World," was
designed to give members of the LCS community a view of issues and problems in the
design of large-systems in the "real" world.

I. Wladawsky-Berger, Vice-President of Development for IBM's Data Systems
Division, began the series with a talk entitled "Trends in Large Computer Systems" in
which he discussed technical problems in the growth of large systems. In December,
T.W. Scrutchin, technical assistant to the manager of the Transaction Processing
Facility, discussed the application of this system to airline reservations and banking
systems. Federal systems division representative K.Y. Rone, a 20-year veteran of
IBM's On-board Space Systems Organization, came in February to present an overview
of the computer systems research that has gone into the space transportation aspects
of the nation's aerospace program. Concluding the series in April, K.R. Milliken, a
project manager at the IBM T.J. Watson Research Center, talked about YES/MVS, a
program which applies Al expert systems techniques to assist operators of large MVS
installations. Judging from the size of the audiences and from the lively discussions that
followed each talk, the series appealed to a wide cross-section of the Laboratory.

The group has decided to write all its new programs in Common Lisp, the new
standard dialect of Lisp. Through the efforts of R. Soley, the group continues to have
strong ties to the Common Lisp standardization effort, both in the old Common Lisp
committee, and the ANSI X3J13 and ISO TC97/SC22 Lisp standardization committees.

2. PERSONNEL

We were fortunate to have Dr. G.A. Boughton, a member of the old Computation
Structures Group, join the new CSG as a research associate, assuming responsibility
for tie weliue of ili MEF, iii paricular the circuit switch. Dr. W. Ackerman, another
member of the old CSG, came on board at the same time, but left for Apollo in
February. He was a great help in getting all the new Texas Instrument Explorers (Lisp
Machines) up and running. N. Skoglund, a visitor from Ellemtel, has returned to
Sweden. During his stay, he developed the NuBus interface logic for the NuCA (NuBus
Channel Adapter), and began construction of a wire-wrapped prototype. The bulk of the
NuCA will be tested through incremental additions to this prototype.
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The IBM group that has been working with us for the past several years has also
changed. M. Atkins, a Senior Associate Engineer from Endicott, joined the group in
November and has been working on the design of the 48 MHz clock subsystem and the
FIFO control logic. At the und of April, B. Blaner returned to Endicott. During his stay,
he completed work on the serial protocol and has also completed detailed design on
80% of the serial receiver logic.

3. MULTIPROCESSOR EMULATION FACILITY

This past year has been one of successes for the Multiprocessor Emulation Facility
(MEF). Thirty-eight Texas Instruments processors are now on site, with 32 fully
operational as part of the facility, connected via the circuit switch as well as standard
Ethernet. The eight existing Symbolic machines are now used primarily for software
development. The old MEF software base, designed and implemented by R. Soley,
was retired this oast year, making way for the new Id World MEF software supporting
the new circuit switch.

3.1. The Current MEF Hardware and the Circuit Switch

During the past year, we have taken delivery of 38 Texas Instruments Explorer Lisp
Machines. Each Explorer is equipped with eight megabytes of physical memory, 140
megabytes of disk storage, ethernet, and bit-mapped display. Thirty-two of these
machines are connected by a circuit switching network. The circuit switch is based on
the Butterfly switch protocols of Bolt, Beranek, and Newman (BBN). The basic protocol
has been robustified with the addition of routing header encoding, data parity, and error
signalling.

Every TI Explorer hosts a circuit switch node. Each node consists of four input links
and four output links. Any input can be routed to any free output through a 4 x 4
crossbar. One input link and one output link is dedicated to the host processor, while the
remaining three input and output links can be connected to other nodes to form an
arbitrary network topology. We have chosen a modified hypercube, called a directed
hypercube, as the MEF network [12]. Developed by S. Heller, the directed hypercube is
similar to traditional hypercube networks except that edges are directed; data can only
flow in the direction of the edge. This enables the network to accommodate 64
machines in a six-dimension-,! directed hypercube rather than the maximum of eight
processors that could be achieved using a traditional hypercube.

Message routing is source based. The host processor appends a string of routing
instructions to the head of each message. A routing instruction is an encoded
designator of one of the four output links at each node. The node strips off the leading
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routing instruction and forwards the message along the requested link. If the requested
link is already active with another message, then the request is denied and the

message is rejected a condition which is detected by the source processor. The source
processor is responsible for retransmission of a rejected message. Although the

hypercube topology makes analytic derivation of routing strings straightforward, any real

implementation is subject to failed links and nodes. S. Heller and D. Culler have

developed distributed algorithms that establish the topology of the network and then

derive shortest path routes without any preknowledge of the current topology. The

algorithm is based first on a network flooding, in which each processor broadcasts to all

its neighbors every new aspect of the network it has discovered until no new information

is derived.

The links that are dedicated to the host processor (one input and one output) are

interfaced through FIFO buffering to the NuBus. These FIFOs, 2K bytes in each

direction, not only perform synchronization but also word width and protocol translation
to and from the 4-bit 6Mhz circuit switch and the 32-bit 10Mhz NuBus. Additional logic is

supplied for message disposition reporting, retransmission, and instrumentation. The

circuit switch node is implemented on a single NuBus card. The approximately 200 TTL

integrated circuits are interconnected using Multiwire technology.

Each external link consists of seven signals in the forward direction: a four bit data

path, a message frame signal, data parity, and data/address demarcation. The reverse

path consists of two status signals, message reject and parity error, for a total of nine

signals per link. Each signal is driven NRZ through twisted pair and is differentially

received through optoisolators.

The three input and three output links from each machine are not directly connected to

other machines to form the hypercube network. Instead, these links are bundled into

twisted-pair flat cables, three links per cable, and are brought to cluster centers that
form three dimensional hypercubes (eight processors). The cluster centers provide

"dimension links" to hook together up to eight clusters, for a total of 64 machines.
Developed by G.A. Boughton, the cluster centers also perform Ik ..al clock distribution
and supply unique node identifiers that can be sampled by any circuit switch card.

The system is globally synchronous at a rate up to six megahertz, yielding a raw per

link bandwidth of three megabytes per second. The clocks are distributed by a network

designed by S. Younis [24]. The distribution system, implemented on a single NuBus
card and hosted by a Lisp Machine, is autocalibrating and is able to hold a 10
nanosecond phase skew across the entire facility (approximately 10 meters).

The circuit switch is in active use for sending tokens between machines in the

dataflow experiments being hosted on the facility. The network has also proven
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invaluable for facility maintenance. D. Morais has implemented a disk transfer protocol

that can simultaneously copy a 30 megabyte Lisp World file to all 32 machines in under
four minutes.

G. Papadopoulos was primarily responsible for the design and prototype construction.
G.A. Boughton was responsible for the production, test, and installation of 35 boards
now in active use. Additional help was provided by G. Bromley and S. Sanghani. M.
Bromley implemented and tested the modified BBN protocols. Ms. Sanghani aided in

schematic capture and design verification.

3.2. The Packet Switch Development

The success of the circuit switch as an interim networking solution for the MEF has
given us an opportunity to develop more rigorously and verify the design of our packet
switching network card. The packet switch is intended to provide two orders of
magnitude more usable bandwidth than the circuit switch while significantly increasing
the reliability of the net itself. The packet switch provides, on a single card, an 8x8
crossbar, routing address translation logic, and serial - parallel conversion circuitry.

Serial links interconnect sister packet switch cards. Using one such card per Lisp
Machine, neiworks of various topologies can be composed. R. lannucci has been
responsible for the high-level design of the packet switch [13] and has coordinated the
implementation work as well. During the last year, we settled on a gate array

technology for the switch and made significant progress on the design.

Our switchover to LSI Logic Corporation as our gate array foundry has been largely

successful. We have fabricated our first chip -- an 8x8 4 bit wide crossbar slice on a
2200 gate, 3 [t m 2 layer metal array. M. Mack designed and simulated this chip prior to
manufacture on our Apollo/Mentor workstations. We received first silicon in February,
and are just completing our acceptance testing. We are happy to report that the design
is 1N- % operational and bug-free. Based on a lotsize of 10 chips (all from the same
run), we find the AC performance meets the advertised worst-case specifications and, in

some cases, exceeds the specs. The chip was designed with fairly wide margins and,
consequently, can be used at speeds approaching 10 megabytes per second per port,
while the current Packet Switch cshitecture only requires four megabytes per second
per port.

Our second chip (called "PASS" -- a not-too-clever acronym for PAcket Switch Slice)
is in detailed design now, and will be fabricated on a 10,000 gate 1.5p m 2 layer metal
array. The experience with the crossbar chip provides us with a data point which
confirms the manufacturer's claim that if a design works under the timing simulator, it
will also work in silicon. This has boosted our confidence in the PASS design.
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The PASS chip is made up of three subsystems: the serial receiver, the serial

transmitter, and the FIFO controller. B. Blaner has made progress in partitioning the

design along these lines, and has also taken the lead in developing the receiver section.
He has proposed, developed, and analyzed a D.C. balanced serial transmission code
which translates each four data bits into six baud, a so-called 4b/6b code. This is an
improvement over the more traditional Manchester-style D.C. balanced codes which

translate each bit into two baud (lb/2b code). He has also developed and verified the

serial link protocol which will be used for flow control and error recovery on the serial

links. The scheme is based on delimiting at message boundaries, and streaming i.e.,
without flow control, within a message. B. Blaner and S. Kaushik designed and
implemented a 32 bit (Ethernet polynomial) CRC generator / checker circuit for the

receiver.

M. Atkins has designed and begun to implement the PASS logic for the FIFO
Controller. The controller provides the next in / next out pointers for static RAM control
in additici to (1) message delimitation allowing last message retransmission, and (2)
instrumentation for measuring FIFO occupancy. He has also completed the high-level

design of the clock logic both on-card and within the PASS chip.

M. Mack has begun design work on the transmitter. He and A. Chang have also

completed the design and TTL prototyping of our scheduler subsystem as well. A mid-

course redesign resulted in simplification of the clocking and interfacing of the

scheduler. This resulted in a 20% reduction in chip count as well. Preliminary work has
already been done to interface the crossbar chip to the scheduler prototype to test the

interface.

We have come to an agreement in principle with IBM on the use of one of their
internally developed high-speed bipolar phaselock loop chips as the serial line front end

for each inter-switch link. J. Pinkerton has studied the analog portions of this serial link
and has developed (1) a Multiwire test card to study the impedance characteristics of

on-card wire, (2) a printed circuit jig and test circuit to characterize the IBM phaselock
loop chip, and (3) a specification for our custom serial cable. Most noteworthy is the

cable which represents the state of the art in shielded twisted pair interconnection. We

are seeking price quotations now and will select a vendor shortly. One manufacturer

has produced a sample of our cable which upon cursory analysis comes close to
meeting our specifications.

We have also reached a decision regarding our strategic direction for circuit card

fabrication. The circuit switch was designed for fabrication in Multiwire technology
rather than in printed circuit for reasons of (1) simplicity in layout, (2) ease of change,
(3) quick turnaround, and (4) economy for production quantities of 35 or so. Our
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experience (and experience of others) has demonstrated to us that we were misguided
in expecting quick turnaround and economy over printed circuit boards of equivalent
complexity. These observations, coupled with the closing of the Multiwire fabrication
plant in New Hampshire, forced us to reconsider the use of printed wiring.

3.3. The Hardware Laboratory and New Equipment

We approached IBM about our need for printed circuit design tools and asked that
they donate to us a P.C. layout facility. They have agreed, and we are in the process of
installing four IBM 5080 color graphics workstations which, when connected to the
previously loaned 4381 host processor, will run the Circuit Board Design System
(CBDS) developed by Bell Northern Research and marketed by IBM. We intend to use
this tool to implement circuit cards as simple as two-layer, one-of-a-kind test fixtures up
through an eight- or ten-layer high density card for the packet switch. This facility
should be operational by August 1986.

We have installed and have started using the equipment donated by Apollo (reported
last period) as schematic capture and simulation stations. We now have four
workstations on our design LAN (interfaced to the DARPA Internet) along with 1.5 GB of
file space and a 6250 bpi streaming tape drive.

To support our LSI Logic work, we have installed their design verifier and Software
Data Book packages on these workstations. This provides us with a library of
macrocells (NANDs, NORs, SSI-type structures, I/O pads, etc.,) and a set of tools for
analyzing the manufacturability, timing, and loading characteristics of our gate array
designs. The design verifier is usable with LSI Logic's LL3000, LL5000, LL7000, and
LL9000 families, spanning the gap from 31 m low density cMOS to 1.5p. m 10,000 gate
cMOS.

We have made some progress in exercising our lab instruments through the IEEE 488
bus. We have developed a spectrum analyzer package for the IBM PC which interfaces
to our Tektronix 7854 Digitizing Mainframe. When completed, this package will facilitate
the analysis of the serial link section of the packet switch in addition to serving as a
general-purpose spectrum analyzer.

4. TOOLS FOR DATAFLOW EXPERIMENTS

Our goal of investigating the feasibility of general-purpose parallel machines has
necessitated developing a variety of tools, including a compiler for generating dataflow
graphs from programs written in Id, vehicles for executing these graphs, and an
environment to facilitate application development (editing, compiling, debugging) and
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architectural study. The first version of the compiler is fully operational, as is a
reasonably efficient graph interpreter. The Id World environment provides an Id mode
within ZMACS, similar to Lisp mode, to allow interactive editing, compilation, execution,
and debugging. Given a working dataflow program, we want to investigate its behavior
when executed on a dataflow machine. To this end we have developed three vehicles
for modeling the execution of dataflow programs on hypothetical dataflow architectures.
The first provides an extremely abstract model, similar to the U-interpreter, with unit
operation costs, unbounded processing power, zero communication delay, and ideal
program distribution. This provides a notion of the inherent properties of the program.
The second vehicle is a complex of 32 machines, each pretending to be a dataflow
processing element and communicating by passing tokens. No statement is made
about the internal structure of the processing element, however, resource management
issues, such as how work and data are distributed over the complex, are addressed in
earnest. An important ancillary benefit is that we really get to indulge in the
multiprocessor experience, keep a large number of machines alive and doing what they
are supposed to. The third vehicle, a detailed simulator running on an IBM mainframe,
allows us to look down inside the processor, in addition to observing system-level
resource management concerns.

4.1. Id Compiler

Version 1 of the Id Compiler [11], which is being maintained by K. Traub, continues to
run. Several small modifications have been made in the past year, including a new
schema for loop constructs which bounds the resources required to execute loops.
While Version 1 has served the needs of the group adequately up to the present time,
its limitations have become more and more apparent as work on the dataflow project
progresses. Besides the issue of compiler robustness, the need for compiler-related
experiments -- program transformations, compile-time type checking, optimizations,
architectural changes, and the like -- has sharply increased.

To help accommodate experiments in program transformation, an alternative syntax
for Id, called PID, has been developed. PID code strongly resembles Lisp, and as a
result is easily manipulated by programs written in Lisp. An undergraduate, E. Hao, has
written a program which translates from PID to Id, so that PID programs may be
compiled by the Id compiler and subsequently run on the simulator or GITA [10].
Together with a modification to the Id compiler which permits translation from Id to PID,
his translator allows an Id program to be translated to PID, subjected to a source-to-
source transformation by a Lisp programs, and finally translated back into Id for
compilation and execution. S. Heller has demonstrated the power of this simple
technique by implementing 'he program transformation described by K. Pingali which
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causes a program to be executed in a demand-driven manner on a data-driven machine
[22].

While the PID-to-ld translator was a quick way of enhancing the power of Version 1 of
the Id compiler, the need still exists for a compiler designed to accommodate all manner
of compiler-related experiments. Version 2 of the Id compiler is currently under
development, and is specifically designed to support experimentation. Its major design
goals:

" Provide a common core of data structures and abstractions that is general
and powerful enough to support all conceivable dataflow compilers. This
common core is described in K. Traub's "A Dataflow Compiler Substrate"
[23].

" Provide a well-documented modular structure that allows the easy addition
and removal of compiler phases, such as type-checking or common
subexpression elimination. In this way, experimental compilation
techniques can be introduced at each step of the compilation procedure.

" Make the major transformation phases of the compiler (parsing, program
graph generation, machine graph generation, and assembly) as
specification-driven as possible. This allows easy modifications to syntax,
schemata, and machine architecture.

" Implementation in Common Lisp, to insure portability.

Development of Version 2 is well under way, and is expected to compile its first

program in August 1986.

4.2. GITA

Last summer a new vehicle, GiTA (for Graph Interpreter for the Tagged-Token
Architecture) for executing dataflow programs was developed to provide an expedient
means for executing and testing compiled Id programs. This facilitated final check-out
of the compiler and preparation of programs for simulation experiments. The first
version of GITA was designed by K. Traub and R. Soley, and implemented in Common
Lisp by K. Traub, R. Soley, and D. Morais to run on Symbolics and TI machines [18]. A
second version of GITA was developed by D. Culler, G. Papadopoulos, A. Chien,

R. Soley, S. Heller, D. Morais, and B. Guharoy which runs in a distributed fashion on the
MEF using the circuit switch.

in the abstract model, a configuration of a program is described by an assignment of
tokens to arcs in the graph. A node is enabled to execute (or fire) when tokens with
matching tags are present on its input arcs. When an enabled node fires, it consumes
its inputs and generates result tokens on its output arcs. Dataflow programs are
determinate, so any enabled node can be fired at any time. Capturing this abstract
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model in a real interpreter is surprisingly straight-forward. GITA maintains a queue of
unprocessed tokens and a collection of unmatched tokens which have been processed.
The main loop dequeues an unprocessed tokens and processes it as follows:

1) If the token requires no partner, the instruction it is destined for is
executed and the result tokens are added to the unprocessed queue.

2) If the token requires a partner, the collection of unmatched tokens is
searched. If a partner is found, the destination instruction is processed as
above.

3) Finally, if no match is found the token is added to the collection of
unmatched tokens.

Of course, the name of the game is representation and access to the various data
structures, and this has worked out very nicely. GITA currently processes about 2400
dataf low operations per second on a Symbolics 3600 and 1000 on a TI Explorer.

4.3. U-GITA

In addition to executing dataflow programs, GITA provides a basis for modeling certain
abstract machines. In particular, it is possible to model the kind of greedy execution
one associates with the U-interpreter. Given a configuration with tokens distributed
throughout the graph, all enabled activities fire in a single time-step, producing tokens
on result arcs. There is no bound place on the number of activities fired and no
communication delay. This is realized within GITA by time-stamping the tokens
themselves. While executing a dataflow program it is possible to construct execution
profiles describing the behavior of the program on an ideal machine. Typically, we look
at the parallelism (number of operations per time step) and resource requirements, e.g.,
number of unmatched tokens. It is also possible to model the abstract behavior on a
machine with a fixed number of processors.

4.4. MEF-GITA

A collection of Lisp Machines with a high-speed interconnection network is made to
act like a collection of (rather slow) dataflow machines by having each execute the GITA
interpreter. Tags and I-structure addresses must be meaningful globally, as in a true
dataflow machine. Machines spawn work off to other processors and service and
request structure operations. All communication is in the form of packets passed across
the high-speed network. The resource management issues in this context are
essentially as if we had real dataflow machines, except the time-scale is somewhat
distorted and the primitives available within each processor are quite powerful. As with
the abstract machine, it is possible to construct execution profiles to help understand
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the details of program behavior on the machine. The three versions of GITA are one in

the same source. Different statistics are collected in the different modes. In fact, we

run U-GITA on MEF to construct profiles more rapidly than would be possible with a

single Lisp Machine. Work has started on providing a uniform way of feeding statistics
collected on these various abstract machines, and the simulator discussed next, into the
Illustrate facility.

4.5. SITA: A Simulator for the Tagged-Token Machine

The simulator for the TTDA has been described in previous reports. It provides a
detailed picture, essentially register transfer level, of the dataflow machine in operation.

The simulator has continued to evolve in response to the needs of the project, and it
finally has a catchy name. The changes reflect our growing understanding of the

architecture. The simulator was modified to support the bounded loop schema

developed.by D. Culler [8]. This allows the unfolding of loops to be controlled by a
runtime constant in the simulator. Implementation of this feature has allowed us to

investigate seriously the effectiveness of proposed loop bounding techniques.

Simulation results have made it clear that current structure allocation schemes fail to

take advantage of the pairing of ALU pipelines and I-structure controllers. As a result,

little benefit is derived from the local paths between the ALU and the I-structure

controller in a PE. In response to this observation, the simulator is being restructured to

allow different numbers of I-structure units and ALU pipelines. This does not preclude

organizing them in tightly coupled pairs. The restructuring allows us more latitude in

experimenting with different machine configurations.

Our computational power was increased considerably last fall by the addition of an
IBM 4381. This faster processor allows us to simulate the TTDA at 2.5 times the rate

that was previously possible. The simulator on the IBM 4381 now executes

approximately 80 dataflow instructions/second.

4.6. Id World

The first version of Id World was completed this past year, integrating tools for editing,
compiling, executing, debugging, and analyzing Id programs in an environment similar

to what Lisp users enjoy. A new Id Mode within ZMACS allows dataflow programmers

to live in the style to which Lisp hackers have become accustomed. From within the
editor it is possible to compile meaningful pieces of dataflow programs. The resulting

graph is automatically loaded into GITA. On the MEF, the graph is transparently

broadcast to all the MEF machines over the circuit switch. When dataflow programs are

invoked, GITA is brought into action, so your Lisp Machine (or even 32 of them) look to
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you like a dataflow machine. The real tour de force is the Id debugger developed by
D. Morais. If your dataflow program breaks, you find yourself in the Id debugger, which
is like the Lisp machine debugger with some important differences. Instead of a stack
trace, you are presented with an invocation tree, since after all this is truly a parallel
machine. The program structure is physically distributed over the entire MEF, but the
debugger makes that entirely transparent.

The other role for Id World is to provide a uniform interface to the three abstract
machines. Currently we can record and display profiles from U-GITA or MEF-GITA, but
work remains in areas of statistics collection, storage, and presentation.

5. EXPERIMENTS ON MEF

5.1. Dataflow Experiments

The focus of our experiments has been resource management in the 1TDA. The
resources include token storage, ALU processing cycles, structure storage, and

structure memory bandwidth. We have begun to examine how policies for managing
these resources effect system performance. The experiments are being conducted on
SITA or GITA, according to whichever provides the more powerful tool for highlighting
the behavior of interest.

Simulation studies have exposed work distribution and data structure mapping as two
crucial issues in constructing a scalable multiprocessor. If we hope to achieve speedup
in regions of limited parallelism, work distribution is the critical factor. If we hope to fully
utilize the machine in regions of high utilization, then structure contention becomes a
very serious problem. Future experiments will further probe these crucial issues.

5.1.1 Token Storage Management
The token storage requirements of tagged-token machines will be quite ',rge as

parallelism unfolds and multiple contexts for procedures in the parallel invocation tree
are accumulated. In his master's thesis [4], S. Brobst suggests that a hierarchical
memory may be an effective way to organize the token storage unit of a tagged-token
machine. A token cache can be used to take advantage of temporal locality in the token
matching nmrcs to yiel-j n high th roughput of nable instructions to the execution

unit. For effective cache performance, however, prudent management of program
parallelism must be exercised to avoid oversaturation of the token cache. The bounded
loop schema developed by D. Culler was shown to have a significant impact in this
regard.
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5.1.2 Structure Storage Management
In any parallel machine, data structure distribution and contention is an important

problem. To this end, A. Chien [7] has examined structure referencing patterns for the
SIMPLE code and several smaller programs. Despite the fact that GITA has limited
fidelity in timing aspects of the TTDA, these measurements (done with one processor)
have given us significant insight into the temporal patterns of structure references.
Preliminary indications of "hot spots" have led us to reconsider seriously the benefits of
spatial locality in a parallel processor. This has led to a restructuring of SITA,
separating the I-structure units from the ALU pipelines and allowing structures to be
allocated across structure memory units.

MEF GITA experiments have also given us some insight into the structure storage
management problem. We have found that structure contention can be significant. Our
initial allocation mechanism places entire structures on a single PE. This, not
surprisingly, leads to structure reference contention when a large number of processors
are employed. Future experiments will consider the effects of allocating structures
consecutive elements are on consecutive processors.

5.1.3 Work Distribution
A number of SITA experiments have focused on the scalability of the architecture.

Recent experiments conducted by A. Chien on highly parallel programs show that the
architecture tolerates significant network and memory latency with only minimal
increases in overall run time. Scalability studies have shown that linear speedups are
achievable for programs with large amounts of parallelism. However, careful attention
must be paid to work distribution in regimes of low parallelism if the linear speedup is to
continue into larger numbers of processors. These results reflect the study of a very
limited class of programs.

With each MEF GITA processor pretending to be a dataflow machine, we have strong
motivation for developing truly distributed mechanisms for allocating work across the
collection of machines. Our approach has been to start simple and look for
shortcomings before developing complex mechanisms, such as proposed for the TTDA.
Currently, each processor makes independent allocation decisions, without concern for
decisions made by other processors. We have experimented with distributing work in a
random manner and in ways that take advantage of program structure. So far we have
observed good speed-up on most applications, but also certain limitations.

Distributing work on a code-block basis appears to be too coarse. In many cases,
there is sufficient instruction level parallelism to keep many processors busy, but not a
sufficient number of active code-blocks. This is exacerbated by iniquities in the
allocation of work. If most processors have one code block, a few have two, and a few
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have none, all may have to wait for the slowest. We plan to investigate finer-grained
allocation mechanisms and simple load leveling techniques.

5.1.4 Limitations of MEF GITA
Our initial experiments with MEF GITA have had a dual purpose: (a) to understand the

impact of certain resource allocation policies, and (b) understand the bias introduced by
MEF GITA as an imperfect execution vehicle. Thus, we have run a collection of
applications on a varying number of processors and have begun to cross-check our
observations against results obtained on the simulator.

One must be somewhat cautious in drawing conclusions from results obtained on
MEF GITA, since there are significant differences between that vehicle and what we
expect a real dataflow machine to be. One difference is that in MEF GITA processing
structure requests draws away from processing of dataflow instructions (since Lisp
Machine cpu cycles devoted to one subtract from those available to the other), whereas
in a real machine these would proceed independently. Also, we expect a dataflow
machine to be heavily pipelined, whereas MEF GITA is not.

In addition to resource management experiments, MEF GITA has provided a basis for
architectural studies. These include (a) analysis of dynamic instruction mixes as
compared to conventional machines, (b) token storage requirements of dataflow
programs, (c) effects of loop bounding, and (d) impact of reference count storage
reclamation.

5.2. DisCoRd: Parallel Graph Reduction on the MEF

Under the guidance of R. Nikhil, P. Lincoln has implemented an emulator for a parallel
graph reduction machine on the MEF. It is called DisCoRd, and was part of his
bachelor's thesis [17].

Graph reduction is another parallel model of computation for functional programs
based directly on the abstract rewriting semantics of functional languages.
(Interestingly, recent work by K. Pingali on demand-driven evaluation in dataflow
architectures indicates that perhaps one can obtain a unified view of dataflow and graph
reduction.)

The system consists of two independent parts: a) a compiler which translates
programs in a functional language to a collection of combinator definitions (in ZetaLisp)
and a table of strictness information for each combinator,1 and b) the parallel graph

1A function is said to be strict in an argument if, whenever the argument is undefined, the function
application is also undefined.
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reduction machine. We have concentrated mainly on b), leaving open compilation
issues in a) for future research.

The parallel graph reduction machine consists of an interconnection of processing
elements (PEs). Each PE consists of a reduction engine, a network manager, and a
load manager. The reduction engine has a "ready queue" of tasks representing
subgraphs to be reduced; for each task it may perform a reduction, or spawn more
tasks to evaluate sub-expressions, based on strictness information. The load manager
periodically broadcasts the size of the ready queue to neighboring PEs, and maintains
an estimate of the sizes of ready queues in neighboring PEs. The network manager is
responsible for all communication to other PEs, and uses the load information to decide

which PE should receive spawned tasks.

T e DisCoRd system allows the experimenter to specify the number of logical PEs
and their logical interconnection topology, and the mapping onto the actual physical
resources of the MEF. It starts up Lisp processes representing the logical PEs on the
MEF Explorers, establishes the communication links, loads the ZetaLisp combinator
code, and starts execution by placing the main program expression graph on one PE's
ready queue. DisCoRd is instrumented to measure abstract computation steps and
elapsed time.

The DisCoRd system is not yet very stable -- there are several obvious coding
improvements to be done, and it uses only Ethernet connections instead of the MEF's

circuit switch. We have had time thus far to perform only rudimentary experiments,
reported in P. Lincoln's thesis, which demonstrate the flexibility of the DisCoRd testbed.
This summer (1986) R. Nikhil expects to make it more robust and then conduct
meaningful experiments to evaluate the feasibility of parallel graph reduction.

6. LANGUAGE RESEARCH FOR THE TAGGED-TOKEN DATAFLOW
ARCHITECTURE

Investigation of language-related issues for the Tagged-Token Dataflow Architecture
continues under the direction of R. Nikhil, motivated by the belief that such research

must be an integral part of any research into parallel architectures.

6.1. Id/83s

The base language we have been using for many years to program the TTDA
machines is a functional language called Id. Originally proposed in [3], Id has evolved in
a somewhat ad hoc and erratic manner over the last few years.

In June/July 1985, R. Nikhil and Arvind used their preparation for the summer course
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"6.83s: Functionai Programming and Dataflow Architectures" as an opportunity to
redesign Id completely, incorporating their latest understanding of issues in data
structures and data types. The resulting language is called "Id/83s", and is reported in
[20].

6.1.1 I-structures in Id/83s
A fundamental aspect of Id is a data-structuring facility called "-structures", which

attempt to solve what we believe are serious problems in purely functional models of
data structures.

In a functional language, data-structures are never "updated". They are created as
complete values, and "update" operations create new values. Thus the operation

update (a, i, v)

where a, i and v are an array, index and value respectively, produces a new array
value that is just like a except at index 3. where it has value v. In general, the
implementation may have to copy the rest of a. To minimize this copying, most
functional languages provide linked structures (such as lists) built out of "smaller" units
such as cons-cells, so that a updated value can share as much as possible of the
original value. Arrays are then simulated by appropriate operations on linked structures.
Unfortunately, for structures that logically behave like arrays, linked structures increase
access times (to at least log(n)), make some traversals extremely inefficient, and
preclude some parallel accesses.

I-structures were first proposed by Arvind in [2] as a solution to this problem, affording
parallel, constant-time access, and avoiding excessive copying. I-structures evolved
out of very operational intuitions about data-structures in memory. The key idea was to
separate the activity of allocating storage for a data-structure from the activity of filling in
its components. Thus an array, when allocated, contains "empty" slots which are later
filled by other concurrent operations. To preserve determinacy, only one value is
allowed to be written into any slot, and any attempt to read a slot is delayed until it is
non-empty.

The semantic implications of I-structures were not so easy to pin down. It was unclear
as to what were the appropriate linguistic constructs to manipulate I-structures. For a
long time, I-structure constructs in Id clung to a conventional expression-oriented
syntax, in keeping with the functional nature of the language.

In the last year, work by K. Pingali has greatly deepened our understanding of I-
structure semantics. It is now apparent that with I-structures, Id is no longer in the class
of purely functional languages, and can no longer be given classical X-calculus-based
semantics. In particular, Pingali has discovered a close connection between I-
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structures and so-called "logic variables" in logic programming languages. He has
developed an elegant semantics for functional languages with I-structures, based on
solving sets of equations involving so-called "closure" operators.

It was initially difficult for us to realize that we had gone beyond functional languages.
I-structjre operations do have the flavor of imperatives. However, the constraints on
assignment and selection guarantee that programs remain determinate. Id/83s has
been designed to reflect this new understanding of I-structures. There are three
constructs relevant to I-structures:

* array (n) is an expression that allocates an "empty" array of size n and
returns as value a descriptor to that array. This value is a first-class value.

* x fi] is an expression analogous to selecting a component of an array -- it
returns the ith value of the array x, after it becomes non-empty.

, x i ] = v is a statement analogous to updating an array location -- t
stores value v in location i of array x, provided the location is empty.
Multiple writes into a location are run-time errors.

Because of the assignment statement, the language is no longer purely expression-
oriented --- conditionals, loops, and abstractions can also be statements.

Several programs have been written in Id/83s, including a version of SIMPLE (a
moderately large program that is a classic benchmark for evaluating high-performance
machines) written by Arvind, giving us some confidence that we have a robust language
design.

6.1.2 Types in ld/83s
R. Nikhil has been studying the question of incorporating a data-type system and type-

checking into Id/83s. We have become increasingly convinced of the necessity for the
compiler to have detailed data-type information about a program. This conviction stems
from various sources.

First, in studying the garbage collection problem on the dataflow machine, we have
come to realize the necessity of the compiler to determine which arcs in dataf low graphs
carry I-structure references and which do not. Without this knowledge, it is necessary to
insert conditional garbage collection code at every fork point and at every array-select
instruction -- this is an unacceptable overhead.

Second, even code that manipulates scalars needs to perform rudimentary type-
checking to avoid misintrepretation of scalar data. This is analogous to tag-checking in
Lisp implementations, and is also an unacceptable overhead.2

20n Symbolics machines, ALU operations are done "optimistically" in parallel with tag checking which
generates a fault if there is a type-error. Wearing our RISC hats, we believe that this adds unacceptable
complexity to the hardware -- most of this checking could and should be done at compile-time.
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Third, it is our experience (corroborated by many other researchers) that compile-time
type-checking is a powerful debugging tool. Many "silly" errors, such as applying CDR to
a number, so typical in Lisp programs and so often discovered after months or years of
use of a program, just do not occur in a statically typed system. It is a common folk
theorem that when programming in languages like ML or Miranda, most errors are
caught by the type-checker.

There are thus two separate but not unrelated questions: a) What data-type system,
and b) What type-checking methodology should we adopt for Id/83s?

In answer to question a), we insist that the type system should not seriously constrain
the programmer -- one should not have to abandon completely the expressive power of
an untyped language. 3 A key to this objective is to adopt a type-system with sufficient
polymorphism, such as that of CLU or ML. We are looking at the second-order typed
X-calculus as a possibility because we believe that it is a clean and well-understood
system that subsumes the type systems of ML and CLU, the only other type systems
we know that are practical and meet our needs for expressive power. This type system
was proposed independently by Girard in 1971 and Reynolds in 1974.

In answer to question b), we would like the type-checker to perform as much
type-inference as possible, i.e., to be able to type-check a program without the
programmer having to laboriously annotate the code with type declarations. We
envisage a facility in Id World where the programmer can point to a sub-expression and
ask for its type, and optionally have it automatically inserted. We expect the Id World
system to keep track of dependencies between functions, and to redo incrementally the
necessary type-checking when a function is edited.

We have been investigating several issues in the use of the Girard-Reynolds type
system in Id. It is well known that this type system does not permit full type-inference,
i.e., if the programmer were to omit all type declarations, the problem of reconstructing
those declarations automatically is undecidable. Thus, some annotation is necessary.
We are investigating questions such as: How much type declaration is necessary, and
is there a simple model for the programmer to decide where to insert such declarations?
If essential declarations are omitted, is it acceptable for the type-checker to produce a
(weaker) Milner-typing instead? If at imes the programmer wishes to bypass the type
system (an,- __, lieve- the-re ,,,, Ih,-y, be such sit ua io-) is there a clean way of
limiting the scope of this circumvention? The Girard-Reynolds type system is based on
a purely functional language (the X-calculus). Does it extend cleanly to Id, which also
has I-structures?

3The type system of Pascal is an example of one that does not meet this goal.
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Because of the immediate need for a working language, we did not include a type
system as part of Id/83s. However, using intuitions that R. Nikhi has gained from long
experience with Milner-type systems, we have designed Id/83s with type-checking in
mind. An example of this influence is seen in the separation of lists (homogeneous
collections) from tuples (heterogeneous collections). We are confident that we can
cleanly augment it with a modern, polymorphic type system.

ro answer some of the type-checking questions, S-W. Chen has completed a
bachelor's thesis [6] in which he has built an experimental programming system with an
incremental Milner type system, along the lines suggested in [21]. Currently, it uses a
small functional language typical of many functional languages; we expect to move this
system soon into Id World using the new compiler being developed by K. Traub.

6.1.3 Garbage Collection Experiments on MEF
Now that we have started running large experiments on the MEF, the garbage

collection problem for the Tagged Token Dataflow machine looms seriously.

Because I-structures are "first-class" objects in Id, they must be allocated dynamically,
and reclaimed using some form of garbage collection. We do not think a conventional
mark-sweep scheme is suitable for the TTDA, partly because it does not generalize well
to the multi-processor situation, and partly because it is difficult, in the TTDA, to identify
reliably the "roots" of reachable structures.

We are thus exploring garbage-collection based mainly on reference-counts.4 The
problem still to be solved is this: Because of the non-determinacy in the scheduling of
events and in the unpredictability of network transit times, "decrement-refcount"
messages and "increment-refcount" messages may arrive at an I-structure in any order.
The reference count stored in the structure may thus spuriously drop to zero, and the
structure may be reclaimed prematurely.

B. Guharoy is instrumenting the I-structure code in GITA to keep track of reference-
count message histories for each structure. We hope to obtain a better idea of how
often reference counts go to zero spuriously, and to develop a probabilistic model of
how long reference counts stay spuriously at zero. With this understanding, we will be
predict with high probability when a reference count is truly zero, and use that as a
signal to move that structure to slower storage, reasonably assured that it will never be
accessed again.

R. Nikhil has also been looking at program analysis to identify conditions under which

4Reference counts cannot be used to reclaim cychc structures, but we do anticipate cycles to be very
common in Id programs.
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we can reliably identify I-structures whose extent in time coincides with the lifetime of a
code-block. We already have a method of detecting termination of code-blocks; the
reclamation of such I-structures may then be triggered by the termination signals of their
parent code-blocks, and we can elide their reference-counting instructions altogether.

6.2. Demand-driven Evaluation

Demand-driven evaluation is often described informally as "doing only those
computations that are required to produce the output of the program." In his doctoral
thesis, K. Pingali defined a functional language L dnd gave two semantics for it : an
operational semantics using dataflow graphs and a denotational semantics using
fixpoints on an abstract domain. The informal notion of "minimal computation required
to produce the output of an L program" is characterized formally by the least prefix point
of the program. He then showed how L programs can be transformed so that a data-
driven evaluation of a transformed program performs only these computations. The
target language for the transformation was a functional language that is a superset of
L. These result can be extended to any functional language without non-sequential
functions such as the parallel-or.

Pingali's thesis describes another transformation for achieving the effect of demand-
driven evaluation, for which the target language is a functional language in which data
structures behave like logical variables in a logic programming language such as
Concurrent Prolog. This target language can be lookLJ at as a variation of Id83/s in
which I-structure cells can be written into more than once : if a write is attempted in any
I-structure cell which already contains some value, the incoming value is unified with the
contents of the cell. S. Heller has taken up the task of implementing this transformation.
Future work will include:

* defining the notion of demand-driven evaluation for a language with I-
structures;

* performing various optimizations to reduce the overhead of the demand
code;

• producing graphs which are self-cleaning, i.e., which do not leave tokens
behind when the program terminates.

6.3. Databases and Functional Languages

In the last year R. Nikhil has restarted research into databases in functional
languages. In [19] he demonstrated the attractiveness and feasibility of the use of
functional languages as front-end query languages for existing database systems. The
semantic advantages included the availability of an expressive, computationally
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complete query language with a rich type system into which conventional data models
(such as the relational model) have a simple and natural embedding. He demonstrated
an efficient implementation, by establishing a correspondence between conventional
database operators and stream operators in a graph-reduction execution model for
functional languages.

We are now studying the problem of including databases as an integral part of

functional languages (rather than relying on an existing, external, conventional database
system).

6.3.1 Data Models and Type Structure
In our view, a data model is nothing more than a data type system; a schema for a

database is nothing more than a type declaration within that type system; and a
database itself is nothing more than an object having the type declared in the schema.
With this )erspective, it is evident why conventional databases are not used for the
hundreds of applications that could use them -- mail systems, operating system tables,
text-processor device and font databases, CAD/CAM engineering databases, etc.
Conventional data models (even the much-touted relational model) just do not offer the
rich type systems that we are accustomed to (and find indispensable) in programming
languages. Not only are the type-systems fundamgntally inadequate, but they are
riddled with ad hoc limitations (such as what types may be components of what other
types, maximum field sizes expressed in bytes, etc.) that have no semantic justification.

We therefore consider it axiomatic that the fact that an object is to be stored in a
database should not be reason for any loss of allowable type structure in that object.
Database objects (i.e., those that are stored persistently) should be freely usable with
transient objects. It is up to the system implementor to design methods that allow the
programmer to store and retrieve any object in a type-safe and efficient manner.

6.3.2 Modeling State
At any given point in time, a database is supposed to model an abstracted state of the

world. As the state of the world changes with time, the database is expected to keep

track of these changed states.

We can ask: How should a database system model the evolving state of the world?
Conventional database systems maintain only a "current" state. A change of state in
the- ,,.,,4 wrd .,;-ck,d by erasing some nforimaton from, and ad dig other n' - r" at
Il % , I t V. I IV 6imlit i I U LY IFOII11 0 111 1 1 L l 0 to

to, the database so that once again it represents the "current" state of the world.

We believe that there are many semantic and pragmatic problems with this

conventional view. First cf all, it seems unlikely that humans model the world this way --
we are capable not only of having an estimate of the current state of the world, but also
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of previous states. We may "forget" information, perhaps because it is unnecessary,
but we do not consciously erase information. In fact, it can be argued that this capability
is necessary to make intelligent decisions about the future.

Second, we believe that erasure of information in databases is motivated mainly from
efficiency considerations, and because we are so used to thinking in terms of constructs
from imperative programming languages. In many database situations (e.g., banks,
personnel, billing) where it is necessary to keep a record of all past states of the
database, one usually designs special, ad hoc methods to retain information that would
normally be erased; these methods are not part of the data model, and are often
designed on a per database basis.

When a current state database is shared by many users, it becomes an overly critical
resource. Most users do not demand the current state -- a "recent" state is generally
adequate. In CAD databases, users often need access to a consistent state of the
database for extended periods of time during which they can experiment with various
designs. If the contention due to such undemanding users is to be avoided, additional
mechanisms must be created to extract snapshots of the database for them.

A central feature of databases is that state transitions, no matter how large, are truly
atomic. In a database that maintains only a "current" state, implementing this
abstraction is extraordinarily difficult. Further, users who wish only to read the database
(no state transition) must contend with those who want to write it (cause a state
transition). In a database that models histories of states, these problems are greatly
alleviated.

6.3.3 Functional Databases
Our view of databases in functional languages thus emerges. A state of the world is

modeled as a persistently stored environment, binding names to values (and perhaps
types). A query on this state is just an expression evaluated in this environment. A
database is a history of states, and an update transaction is a meta-level expression
that extends this history by creating a new environment (such as by redefining a
function SALARY mapping PERSONs to NUMBERs) based on the existing history.
Depending on the application, we may permit only linear history extensions, or we may
permit branching extensions -- both have their uses. Extensions occur atomically -- a
failed update transaction simply leaves the history unchanged. Fur linear history

extensions, update transactions are serialized to preserve atomic state transitions.

Explicit environment-specification operators in the query and update languages allow
queries and updates to depend not only on the most recent state, but on any previous
state.
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With this philosophical background, we have been a) studying language issues to
express this model of state, and b) possible implementation strategies. The major
difficulty in a) is to have a view of types that is consistent across histories, i.e., to have
meaningful operations that may update a data-type definition from one state to the next.

For implementations it appears that histories of states can be superimposed nicely on
graph-reduction models of memory. Each state is associated with its own private graph
memory which can share large subgraphs with previous states via pointers to previous
graph memories. Thus, a new state initially contains only the portions of the
environment that are "updated" with respect to the previous state. Using standard
copying garbage-collection techniques, other parts of the new state can be moved up to
the new graph memory to improve locality transparently to the user, and old parts of the
state history can be cleanly pruned or re-attached dynamically according to available
storage capacity.

7. WORK UNDER PROFESSOR DENNIS

7.1. The VIM Project

The VIM project aims to develop an experimental computer system based on
principles of data-driven instruction execution and functional programming languages.
The project is unique in striving for a system that will serve multiple users with a degree
of semantic coherence well beyond what contemporary computer systems are able to
offer. It also differs from other efforts to build systems to support functional
programming in that the issues of efficient execution of functional programs over a
hierarchical memory are addressed and solutions sought. The system uses a base
language that is a form of acyclic dataf low graph, and a user language VIMVAL that is an
extension and revision of the functional language VAL.

7.2. Accomplishments

In the past five years, substantial progress has been made on VIM. The resolution of
successive issues has brought the project to the point where only a few problem areas
need to be addressed before a major implementation effort can be mounted.

The project began in 1981 when we rt dlizud that our earlier proposals for a general
purpose computer system based on dataflow principles could not be adequately
evaluated due to the absence of experience in formulating and running functional
programs. The nature of programming itself would be so changed by the kind of system
we proposed that all past experience would be irrelevant to the detailed design
decisions required to define a practical machine.
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From the beginning, our plan has been to build an experimental system made of

ordinary off-the-shelf components that can evaluate the functional programming style

and particular mechanisms for supporting modular programming of a given user
community. Once justified by our experience with this unique experimental

programming environment, plans could be refined and developed for the kind of

powerful and efficient computer systems envisioned in our earlier work.

The first step was the formulation of an operational computer system that

encompassed all essential features of the proposed system. This operational model

may be viewed as an early simplified specification of the base language of our system.

Initially the plan of development was to define a series of operational models of

increasing detail such that the most refined model was a specification of the VIM
implementation -- a set of microcoded routines running on a suitable

microprogrammable computer such as a Lisp Machine.

In the academic year 1981-82 the attraction of having a working interpreter for VIMVAL

prevailed and an implementation was written by J. Stoy, visiting scientist from Oxford

University. Many issues concerning the efficient encoding of instructions and data for
the complete language were resolved at that time. In addition, our understanding of the

VIMVAL language was refined and improved.

The next step was to develop and evaluate alternate approaches to representing and

operating on data structure values stored in the ViM heap. Since the heap is intended to

be implemented on a hierarchical memory comprising semiconductor and disk systems,

and since efficient concurrent handling of many memory transactions is desired, we

proposed using fixed-size chunks of memory as the unit of allocation to a data structure.

The corresponding creation, augmentation, and access algorithms were designed and

specified by B. Guharoy, who also developed suitable mechanisms, based on the
reference count technique, for disposing of chunks no longer accessible to

computations.

In a major study [14], S. Jagannathan showed how backup and recovery mechanisms

may be built into VIM so that users suffer negligible loss of information in the event of a

system crash due to any single failure. The technique is based on saving information
that permits reconstruction of the results of all function evaluations performed from
initiation of a user command to the time of the crash. A small online stable store is

proposed to hold the backup data prior to writing it on backup tape.

One significant change in our plans is the switch from a strongly typed language in the
spirit of CIIJ to the use of optional type declarations and a Milner-style type inference

technique. The refinement of Milner's fheory and an elegant statement of the type-
inference algorithm for VIMVAL are given in the prize-winning bachelor's thesis of
B. Kuszmaul [16].
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Recently, a new operational model for the VIM base language has been formulated by
Guharoy and Jagannathan. This work reflects our present thoughts on the elements of
the VIM base language. It has been extended to help establish the correctness , the
data structure access algorithms and to establish the correctness of the backup and
recovery algorithms.

Several new studies have focused on the user programming environment supported
by the VIM system. A proposal for the user command language has been drafted by
J. Stoy. This proposal raises many questions about the role of environments (which in
VIM serve the function of directories in other systems), and the impact of the command
language on the Vim type system. These issues are the subject of current doctoral
research by E. Waldin.

Other topics for future study include evaluation of approaches to supporting
nondeterminate computation using guardians, the application of non-determinacy to
data base systems and backtrack programming, and study of language constructs for
defining data structure values in general recursive data types.

7.3. Compiling for the Static Dataflow Machine

A compiler that produces efficient dataflow machine code from programs written in the
applicative language VAL [1] is crucial to the success of the static architecture in large
scale scientific applications. To keep the architecture simple and efficient for
computations involving large arrays of numerical data, most of the decisions about
resource assignment (allocation of data structures to space in array memory and of
dataflow instructions to processing elements) have been entrusted to the compiler.

To accomplish an effective resource allocation, the compiler must transform the
program so that its structure is a good match to the processing power and memory
space of the target machine. Global program transformations are needed because the
several sections of a large program must be capable of operating together in a way that
allows full utilization of performance without requiring inordinately large amounts of
memory for intermediate results. It is reasonable to attempt such global program
transformations because VAL is a functional or applicative language, and therefore
interactions among program parts occur only at points that are evident from the
syntactic structure of the program -- the impossibility of "side effects" removes the major
ui,,uty that ini,,,uts use of g9ubal uptimizations in compiiers for conventional

languages.

A pipelined code mapping scheme as a conceptual basis for such a compiler has
been developed in Gao's doctoral research, which will be completed soon. His thesis
explores the transformations that can be made to achieve high performance for
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numerical programs when executed on a computer based on dataflow principles. We
demonstrate how the massive parallelism of array operations in such programs can be
effectively exploited by the fine-grain parallelism of static dataflow architecture.

The key is to organize the dataflow machine program graph such that array operations
can be effectively pipelined. We introduce a simple value-oriented language to express
user programs. Program transformation can be performed on the basis of both the
global and local dataflow analysis to generate efficient pipelined dataflow machine code.
A pipelined code mapping scheme for transforming array operations in high-level
language programs into pipelined dataflow machine programs is described in Gao's
doctoral thesis. The machine architecture support for efficient pipelining also is briefly
addressed.

Certain results of the thesis research, as well as its application of the pipelined code
mapping scheme to some numerical problems, are reported in the publications of the
group.

7.4. Simulating Applicative Architectures on the Connection Machine

We have simulated applicative architectures on the Connection Machine. This work
was done as a master's thesis by B. Kuszmaul [15].

The Connection Machine (CM) is a highly parallel single instruction multiple data
(SIMD) computer, which has been described as "a huge piece of hardware looking for a
programming methodology." Applicative languages, on the other hand, can be
described as a programming methodology looking for a parallel computing engine.

By simulating architectures that support applicative languages ("applicative
architectures"), e.g., dataflow and combinator reduction architectures) on the CM we
can achieve the following goals:

* Quickly and easily experiment with the design and implementation of
applicative architectures.

" Run large applicative programs efficiently enough to gain useful
experience.

" Support programming environments that allow us to do general purpose
computation on the CM.

B. Kuszmaul's thesis describes the techniques which we use to simulate applicative
architectures on the CM, and the discuss implications for the generalized case of
simulating multiple instruction multiple data (MIMD) systems on single instruction
multiple data (SIMD) computers.
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1. INTRODUCTION

The Distributed Computing Systems Group has explored a number of aspects of
distributed systems, ranging from systems support to semantics of distribution. These
various projects are described in the following sections. During the latter part of the

year, the activities in the group lessened as attention was focused on the Common
System project, described elsewhere in the report.

2. SWIFT

SWIFT is an operating system designed to facilitate efficient network communication.
The central feature of the SWIFT operating system is support of a novel modularity
technique particularly suited for network protocol software, in which protocol layers may
communicate with each other by sub-routine call, rather than by interprocess message.
SWIFT executes in single address space for efficiency, with programs written in a high
level language to ensure stable and robust operation.

The SWIFT s tem has been described in greater detail in previous annual reports.

During the current year, work on the SWIFT system was completed. The major

activity of the year was a thesis by J. Gibson, which explored the robustness of the
single address space in the face of program failure. In the worst case, a program bug in
a single address space system can cause arbitrary corruption of any aspect of the
environment, because the faulty program can overwrite any region of memory, including

those areas critical to overall system operation. SWIFT avoided the worst of these
problems by implementing code in CLU, a strongly typed language. The run time
checking in CLU prevented such gross errors as referencing outside the bounds of an
array or using an arbitrary word of memory as a pointer. These checks are not
sufficient to ensure the total health of the system after a faulty program has failed,
however. It is necessary to identify and de-allocate the storage associated with that
program, and inform any cooperating programs of the failure, so that they, in turn, may
make their storage consistent. Gibson's thesis demonstrated that it is possible to build
mechanisms which, within a single address base, divide the computations into useful
recovery elements, and to dis-entangle and de-allocate one of these elements after a

failure. It is thus possible to build an efficient single address space system which is fully

as robust and recoverable as the simple multiple address base system such as Unix.
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3. RESIDENTIAL CATV-BASED DATA COMMUNICATIONS

As the United States shifts from a manufacturing economy to an information-oriented
economy, data processing and computers play an increasingly important role in our
work. For people who work with information, it is feasible to work one or more days a
week at an office in the home. Working at home has several advantages, including
reducing the time and cost of commuting. Work during non-business hours becomes
convenient, so that personal schedules may easily be shifted. Work at home also
allows one to work during the day without interruptions.

The cost of duplicating office equipment, such as a personal computer, at the office in
the home becomes economically competitive with commuting as the price of electronics
declines. For work at home to be productive, a worker must have access to the
resources available in the office; for example, the use of a mainframe computer or
shared data-storage system. The worker at home must not become isolated from the
office work environment.

The modern office consists of computers and peripherals connected together with a
local area network (LAN). The LAN provides high-speed packet-switched

communications over a limited area. To connect the home computer to the office
computer system requires a high-speed packet-switching network to the home. A
residential cable television (CATV) system is an existing high-bandwidth channel to the
home that can provide the basis of such a system.

A recently completed thesis by D. Feldmeier describes a preliminary design for a
residential CATV-based high-speed packet-switching network to the home. The thesis
considers the theoretical and practical aspects of providing such a service and suggests
a possible system design. The system is considered in three parts: transmission from
the home to the cable television hub (upstream transmission), transmission from the
hub to the home (downstream transmission), and the access scheme.

Upstream transmission is difficult because of the high noise levels on the upstream
channel caused by the ingress of short-wave signals and impulse noise. Several noise
reduction techniques must be used simultaneously for robust upstream transmission.

The downstream channel has lower noise, but the data signal must be compatible with
the CATV system, video signals and television receivers. Vestigial sideband
transmission is suggested for total system compatibility.

Existing access schemes, such as those used for local area networks and satellite
networks, are unsuitable for a high-speed CATV-based network. Modified versions of
two satellite access schemes are suggested as possible solutions. The best techniques
for upstream transmission, downstream transmission and access scheme are combined
into a single proposed system.
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4. LONG ATOMIC TRANSACTIONS

Long atomic computations are computations that may execute for long periods of time
but appear to execute serially. In addition, a computation is either committed or
aborted. In the latter case, any work performed by the computation is undone and the
computation appears to have never executed. In a distributed system, a computation
may be delayed from finishing because some nodes in the system are disconnected
frequently. The delay can also be caused by unreliable network links or operations that
require human interaction. Applications that run on portable computers, such as a
personal calendar server, are likely to generate long computations. A computation that
sets up an appointment may last for hours or even days because one of the calendars
is disconnected from the system.

Because of their lengths, the executions of long computations are more likely to be
interleaved or encounter some transient failures. The use of atomicity as the definition
of correct behavior relieves the programmers of worries about interferences from
concurrent computations or partially executed computations interrupted by failures.
However, for many applications, a traditional transaction processing system that uses
simple read-write locking does not provide sufficient concurrency. Nor is it desirable to
abort a computation whenever a transient failure occurs. The decomposition of a
computation into a nested tree of actions provides a partial solution: an action can be
aborted without undoing the effects of its sibling and ancestor actions. The approach is
inadequate as actions near the top of the tree are still vulnerable to transient failures
that happen while they are waiting for their children actions to return. A Ph.D. thesis by
P. Ng has investigated different solutions to the concurrency and resilience problems in
supporting long atomic computations in a distributed system.

We follow the Argus project in modeling the system as a collection of atomic objects,
each of which provides a set of operations and a serial specification specifying the
externally visible behavior of the object when there are no concurrency or failures. To
guarantee atomicity, each object must ensure that the local knowledge on how
computations are ordered are consistent with the rest of the system. The behavior of
the object is also constrained to not reflect any incomplete computations (which may be
aborted subsequently). We call these constraints serialization dependencies and failure
dependencies. A computation may have to be delayed or restarted when dependencies

Two types of solutions to the concurrency problem are explored. One of them
involves adapting the concurrency control algorithms in the system. We have designed
algorithms which distinguish between short and long computations. These algorithms
eliminate the serialization dependencies created for short computations, and reduce
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those created for long computations. The cost of failure dependencies can be reduced
with optimistic algorithms. The likelihood of being over-optimistic or cascaded aborts
can be minimized with a checkpointing mechanism described below.

Concurrency can also be improved with the use of application semantics. Atomic
objects can be implemented with non-atomic objects as long as the external behavior
conforms to the serial specification. Application-dependent synchronization and
recovery are needed to mask internal concurrency and failures.

We have developed programming paradigms that simplify the writing of such code and
help the programmer to convince himself of the correctness of the implementation. We
provide a history abstraction which captures the local knowledge on what operations
have already been invoked at an object, the status of the operations, and the possible
ordering constraints on these operations. The history object can be used to determine
when dependencies are created. For recovery purposes, a program can follow an
intention list paradigm in which an operation is inserted into the history when it is
invoked (and no dependencies are created), and "merged" with other committed
operations when it is committed. If the computation which invoked the operation is
aborted, the operation is deleted from the history object. An alternative is an undo
paradigm in which arbitrary changes can be made in the representation of the atomic
object (in addition to inserting into the history), but an application-defined undo
operation will be invoked to undo the changes when the computation aborts.

The level of concurrency that can be achieved depends on the semantics of the
application as expressed in the serial specification. Interesting classes of functionality-
concurrency trade-off can be identified. Concurrency is improved without abandoning
atomicity, which has the advantages of being easy to understand and program. This
approach compares favorably with other approaches in which atomicity is sacrificed to
allow application-defined "interleavings". We can show that any given set of permissible
interleavings can be modeled with an equivalent system which consists of atomic
objects with relaxed semantics. The atomicity property allows the behavior of the
system to be represented succinctly. We are also investigating the classes of
applications in which atomicity proves too limited to describe the desirable behavior.

Another aspect of our work on long atomic computations is solutions for the resilience
problem. To avoid losing the work of an interrupted long computation, a checkpointing

mechan,,, is needed. We have designed a checkpointinr mechanism which allows
the programmer to specify enough local state about a computation so that it can be
restarted at a checkpoint. Rollbacks due to site crashes, deadlocks, or optimistic

concurrency control algorithms can be limited.

In view of the possible long delay to communicate between two sites, we have shown
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how the checkpoints within a computation can be coordinated. A program invoking
another possibly remote program can execute a checkpoint in anticipation of (or in
response to) a long delay in communication. It can also inform its own caller so that its
caller can in turn prepare for the delay.

Other than site crashes, a computation may run into communication problems. If the
communication network partitions frequently, an operational path linking the sender and
receiver may never materialize. Relaying is needed under these circumstances.
Because the clients of our relaying service are prepared to handle duplicate messages,
we are able to come up with a simple relaying protocol which minimizes the state that
needs to be kept by the parties involved. In fact, replication can be used intentionally to
increase reliability and minimize delay.

5. RESOURCE MANAGEMENT IN PACKET NETWORKS

Today more and more applications are being brought into packet switching networks,
such as packet voice, image data transmission, and teleconferencing. These new
applications raise more stringent and diverse performance requirements. They require
that the network not only prevent congestion, but also provide a guarantee of various
service characteristics. New applications bring another impetus to the research for
effective network traffic control and resource management. Their successes, or the
further success of packet switching networks, will depend on how well the network can
meet these requirements.

L. Zhang continued her work on network resource management and data traffic
control. The design of a new network architecture is under way, which will offer clients
transmissions services with required delay and throughput performance. The
architecture explores a new building block, flow, as the basic data transmission unit for
network resource management and traffic control. A flow is composed of a stream of
packets that travel through the same route inside the network, and that require the
same transfer performance. A flow differs from packets in datagram networks in that it
is treated as one sequence of packets, rather than as independent entities. A flow
differs from a virtual connection in VC networks in that it does not concern itself with the
connection semantics, such as connection open, close, and state infornation on data
transmissions, Instead, a flow is concerned with the allocation and deallocation of
network resources that is required to deliver all data in that flow within the specified
performance bounds.

Instead of the conventional window flow control mechanism, the ,ew architecture v'ill
explore rate-based data flow control in statistically multiplexed packet switching
networks. It will explore a new direction in protocol design and implementations, which
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is to coordinate hosts and the network, and to apply the knowledge of data sources'
statistical characteristics to network traffic regulation and control.

6. THE NETBLT PROTOCOL

NETBLT (Network Block Transfer) is a transport level protocol intended for the rapid
transfer of a large quantity of data between computers. It provides a transfer that is
reliable and flow controlled, and is structured to provide maximum throughput over a
wide variety of networks.

The protocol works by opening a connection between two "clients" (the "sender" and
the "receiver"), transferring the data in a series of large data aggregates called "buffers",
and then closing the connection. Because the amount of data to be transferred can be
arbitrarily large, the client is not required to provide at once all the data to the protocol
module. Instead, the data is provided by the client in buffers. The NETBLT layer
transfers each buffer as a sequence of packets, but since each buffer is composed of a
large number of packets, the per-buffer interaction between NETBLT and its client is far
more efficient than a per-packet interaction would be.

In its simplest form, a NETBLT transfer works as follows. The sending client loads a
buffer of data and calls down to the NETBLT layer to transfer it. The NETBLT layer
breaks the buffer up into packets and sends these packets across the network in
Internet datagrams. The receiving NETBLT layer loads these packets into a matching
buffer provided by the receiving client. When the last packet in the buffer has been
transmitted, the receiving NETBLT checks to see that all packets in that buffer have
arrived. If some packets are missing, the receiving NETBLT requests that they be
resent. When the buffer has been comple',e'y transmitted, the receiving client is notified
by its NETBLT layer. The receiiing client disposes of the buffer and provides a new
buffer to receive more data. The receiving NETBLT notifies ine sender that the buffer
arrived, and the sender prepares and sends the next {uffer in the same manner. This
continues until all buffers have been sent, at which time the sender notifies the receiver
that the transmission has been completed. The connection ;s then closed.

As described above, the NETBLT pr',tocol is "lock-step"; action is halted after a buffer
is transmitted, and begins again after confirration is received from the receiver of data.
NETBLT provides for multiple buflering, in which several buffers can be transmitted
conci rrently. Multiple buffering makes packet flow essentiaily continu)us and can
improve performance markedly.

NETBLT has been testec over several different networks with good success. Testing
has been conducted using IBM PC/ATs and Symbolics Lisp Machines. We have
obtaiied very high speeds over fast LANs (e.hernets and Proteon Ring nets); the PCs
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transfer data at a rate of over 1.4 million bits per second, while the Lisp Machines
transfer data at about 1.3 million bits per second. Testing of NETBLT over long haul
networks has provided interestirg results; areas of the protocol, particularly those
dealing with timeout strategies, have been extensively overhauled as a result of testing
over the 3Mbps Wideband satellite network. Initial tests achieved transfer rates of
about 150,000 bits per second. This comparatively low number has been attributed to
the relatively low-performance PC ethernet interface; further testing with Lisp Machines
should achieve substantially higher transfer rates.

The testing has shown NETBLT to be fairly adept at achieving high transfer rates over
different networks. Unfortunately, optimum performance is being hampered by a few
problems. While NETBLT provides functionality to negotiate transfer flow-control
parameters based on each client machine's resources, it cannot notify intermediate
gateways of the flow control parameters. Indeed, one of the problems with testing over
the Wideband network has been that the gateways along the transfer path have no
knowledge of the client machines' capabilities and are forwarding data too quickly for
the client machines to handle.

In order to maximize NETBLT transfer rates, we must come up with a method that
allows flow-control negotiation between gateways and ulient machines as well as
between the client machines themselves. The ST protocol (currently being used to
carry voice and video packets over the Internet) provides this functionality, although at
the expense of forcing a fixed transfer path. Since ST operates in the same layer as IP,
it might be possible to use ST to perform flow-control negotiation for NETBLT transfers.
Another solution is to invent an IP protocol that performs the flow-control negotiation.

Future research directions for the NETBLT protocol will probably include designing a
gateway flow-control negotiation protocol, performance-testing of NETBLT with
applications such as video transmission, and continued performance-testing over
different networks.

7. PCMAIL: A DISTRIBUTED MAIL SYSTEM FOR PERSONAL
COMPUTERS

Pc mail is a distributed mail system that provides mail service to an arbitrary number
,f users, each of who has access to on nr more ,-,--nal ,.,,--,, PC) The

each -_ -. ... ... - ).. S h,
system is divided into two halves. The first consists of a single entity called the
"repository". The repository is a storage center for incoming mail. Mail for a Pc mail
user can arrive externally from the Internet or internally from other repository users.
The repository also maintains a stable copy of each user's mail state (the user's "global
mail state"). The repository is therefore typically a computer with a large antount of disk
storage.
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The second half of Pc mail consists of one or more "clients". Each Pc m~il user may
have an arbitrary number of clients, which are typically PCs. The clients provide a user
with a friendly means of accessing the user's global mail state over a network. In order
to make the interaction between the repository and a user's clients more efficient, each

client maintains a local copy of its user's global mail state, called the "local mail state".
Since clients are PCs, they may not always have access to a network (and therefore to

the global mail state in the repository). This means that the local and global mail states
may not be identical all the time, making synchronization between local and global mail

states necessary.

Clients communicate with the repository via the Distributed Mail System Protocol
(DMSP). The repository is therefore a DMSP server in addition to a mail end-site and

storage facility. DMSP provides a complete set of mail manipulation operations ("send
a message", "delete a message", "print a message", etc.). DMSP also provides special
operations to allow easy synchronization between a user's global mail state and his
clients' local mail states. Particular attention has been paid to the way in which DMSP
operations act on a user's mail state. All DMSP operations are failure-atomic (that is,

they are guaranteed either to succeed completely, or fail completely). A client can be
abruptly disconnected from the repository without leaving inconsistent or damaged mail
states.

Pc mail is a mail system for PCs. Its design has therefore been heavily influenced by
several characteristics unique to PCs. First, PCs are relatively inexpensive. This
means that people may own more than one PC, perhaps putting one in an office and

one at home. Second, PCs are portable. Most PCs can be packed up and moved in
the back seat of an automobile, and a few are truly portable -- about the size of a
briefcase -- and battery-powered. Finally, PCs are resource-poor. A typical PC has a
small amount (typically less than one megabyte) of main memory and little in the way of
mass storage (floppy-disk drives that can access perhaps 360 kilobytes of data).

Because PCs are relatively inexpensive and people may own more than one, Pc mail

has been designed to allow users multiple access points to their mail state. Each Pc
mail user can have several client PCs, each of which can access the user's mail by

communicating with the repository over a network. The client PCs all maintain local
copies of the user's global mail state, and synchronize the local and global states using
DMSP.

It is possible, even likely, that many PCs will only infrequently be connected to a
network (and thus be able to communicate with the repository). The Pc mail design

therefore allows two modes of communication between repository and client.
"Interactive mode" is used when the client PC is always connected to the network. Any
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changes to the client's local mail state are immediately also made to the repository's
global mail state, and any incoming mail is immediately transmitted from repository to
client. "Batch mode" is used by clients that have infrequent access to the repository.
Users manipulate the client's local mail state, queueing the changes as "actions".
When next connected to the repository, the actions are transmitted, and the client's
local mail state is synchronized with the repository's global mail state.

Iinally, the Pc mail design minimizes the effect of using a resource-poor PC as a
client. Mail messages are split into two parts: a "descriptor" and a "body". The
descriptor is a capsule message summary whose length (typically about 100 bytes) is
independent of the actual message length. The body is the actual message text,
including an RFC-822 standard message header. While the client may not have
enough storage to hold a complete set of messages, it can always hold a complete set
of descriptors, thus providing the user with at least a summary of his mail state.
Message bodies can be pulled over from the repository as client storage becomes
available.

A prototype Pc mail system is currently being used by people at LCS and at Project
Athena. The repository runs under 4.2 or 4.3 BSD Unix, and client code has been
implemented for the IBM PC. Pc mail was discussed at a recent conference on mail
systems and personal computers. There was a great deal of interest in the project as a
basis for a standard campus-wide mail system. Several enhancements to the basic
system were discussed and will probably be added to the Pc mail design and to the
prototype implementation. These enhancements include shared mailboxes and mailing
list support. The issue of scalability has also been brought up; future work on Pc mail
will probably involve writing client code to run on under GNU-EMACS on 4.2/4.3 BSD
Unix. A Unix client implementation would allow Pc mail to be used on MicroVax and
Sun workstations as well as on Vaxes. This would give us a greater pool of users to
test the system (currently relatively few people are in the position of heing able to use
'Pc mail from a networked IBM PC).

8. NETWORK MONITORtNG

Based on traffic measurements done on the local ring network, R. Jain Fnd
S. Routhier proposed a new traffic model. In ti,e new packet train model the traf"ic on
the network consists of a number of packet streams between various pairs c- r,odes on
the network. Each node-pair stream consists o; a number of ',rains, with each train
consisting of a number of packets (or cars) going in either direction. The nter car gap is
large (compared to packet transmission time) and random. The inter train time is even
larger. Another observation is that packet arrivals exhibit a source locality.
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A recently completed thesis by T. Hengeveld measures the network availability of two
local area networks: an ethernet and a token ring. His thesis concludes that both
networks were very reliable, although both have periods of catastrophic outages. For
both networks, the outages were bimodal, with mostly short outages but occasional-long
outages that accounted for much of the network downtime.

As part of our continuing commitment to excellence in network monitoring, we are
beginning a new and exciting project destined to bring insight into the mysteries of
higher level protocols communication peculiarities on the token ring network.

A new monitoring project is being undertaken by D. Feldmeier and S. Routhier. The
purpose of this monitoring is to gain information about tt-- r, 'mber and duration of
logical connections on the network for applications to flov. %ontrol and congestion
control. Another 'urpose is to gather more information on packet arrival at hosts ry the
network, particu' ,ly gateways. Unlike previous monitoring which gathered statistics
based on low-level, network-specific protocol headers, this project will gather data
based on the IP network-headers and the-port numbers of higher network headers,-such
as UDP.

A-second monitoring project ;s also bengstarted. This project will be examining-the
traffic patterns and loading on some of the Laboratory's ethernets. Preliminary results
indicate that the ethernet is not highly loaded though the performance is less then we
would like. We hope to-deternine what may be causing this performance loss and to
correct it in our next generation of ethernets.

9. ACCESS TO INTER-ORGA\iZATION COMPUTER NETWORKS

When two or more distinct organ;zations interconnect their internal computer networks
they form an Inter-Organfzation Network /10/). IONs support the exchange of
CAD/CAM data between manufacturers and subcontractors, software distribution from
vendors to users, customer input to supptiars' order-entry systems, and the shared-use
of expensive computational resources by research laboratories, as examples. A Ph.D.
thesis uy D. Estrin analyzes trie organization implications of using computer networks
for inter-organization communication, and the technical implications of interconnecting
networks across organizatoi; boundaries.

We present a descriptive model of the effects of ION use. IONs change the
,conomics of inter-organization communication. In particular, the speed and
incremental cost characteristics support more intense communication, whie -the
capabilities arid automatic nature support a greater scope of information and resource
sharing across organization boundaries. Those enhanced communication patterns in
turn aiiow participants to carry out more activities across their organization boundaries
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and with larger numbers of outsiders. At the same time, the ION-supported

communication is more penetrating because outsiders access internal resources

direct,,. In addition, when IONs are not universally accessible, communication is

segmented between ION and non-ION organizations. These latter two characteristics

introduce restrictions which detract from the expansive qualities of IONs. In particular,

to compensate for increased penetration organizations may increase formalization of

and controls on cross-boundary flows: while segmentation may lead organizations to

narrow the range of favored interchange partners to those that are accessible via ION

facilities.

We demonstrate the descriptive and predictive value of our general model in the

domain of research and development laboratories. This domain provides evidence for

our predictions of intensified communication of greater scope and penetration, as well

as expanded numbers of cross-boundary activities and interchange partners. We

attribute the absence of predicted restrictive behaviors to the absence of resource
sharing.

Given our analysis of the organization context in which IONs are used, we

demonstrate that such interconnections are satisfied by traditional network design

criteria of connectivity and transparency. To the contrary, a primary high-level

requirement is access control, and participating organizations must be able to limit

connectivity and make network boundaries visible. At the same time, these access

control requirements are not satisfied by traditional computer security mechanisms. For

example, this investigation of inter-organization networks makes clear that where

traditional security mechanisms emphasize information flow, network environments are

equally, if not more, concerned with command flow, i.e., invocation of services and

applications. We develop a scheme based on non-discretionary controls that allows
interconnecting organization to combine gateway, network, and system-level

mechanisms to enforce cross-boundary control over invocation and information flow,
while minimizing interference with internal operations.

Access control requirements such as these impose new requirements on the

underlying interconnection protocols. Just as internetwork access control requirements
called for reevaluation of traditional computer security criteria and mechanisms, so

cross-boundary connections cal! for evaluation of traditional approaches to network
interconnection. Consequently, we demonstrate the need for alternative interconnection

protocols that support loose couplings across administrative boundaries and that

accommodate the necessary control mechanisms. Message-based gateways that
support non-real-time invocation of services (e.g., file and print servers, financial
transactions, VLSI design tools, etc.) are a promising basis for such loose couplings.
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The thesis demonstrates the value of our bimodal approach to system design and
analysis in which we ask both how industry and organization contexts shape a new
technology, as well as how a new technology affects the organization and industry
contexts in which is is applied.
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INFORMATION MECHANICS

1. INTRODUCTION

The Information Mechanics Group has been undergoing some reorganization,
following the departure of E. Fredkin as a Group Leader. The production and
documentation of CAM-6 and the writing of a book on cellular automata machines (see
below) have created a work overload; added to this is the need to publish our results in
a timely manner in highly competitive areas such as fluid dynamics modeling. As a
result, we have been forced to queue the publication of other results and an adequate
treatment of a number of new ideas.

2. CELLULAR AUTOMATA MACHINES

The modeling philosophy embodied in the Cellular Automata Machine (CAM)
architecture has been extensively documented in a book, Cellular Automata Machines --
A New Environment for Modeling [5], which will be published in the Fall by the MIT
Press. This book, conceived as a standalone work, will do double duty as a
complement to the documentation for CAM-6. A trickle of CAM-6's is finally being
produced; we are struggling to get the manufacturer to ramp up production.

N. Margolis has single-handedly completed the immense task of writing a usable and
reliable software package for driving in real time up to eight CAM-6 modules through the
IBM PC; this package provides a high level, structured environment for interactive
experimentation with cellular automata models. To him goes the credit also for a
number of hardware revisions that make the machine more powerful and conceptually
simpler to use, and for insuring that the final product indeed performs according to
specifications.

A. Califano has been writing the CAM-6 user manual and developing primitives for
statistical experiments with the machine. T. Cloney has interfaced CAM-5 with a CADR,
and has been running it as a Lisp Machine co-processor for experiences using cell
arrays much larger than those directly provided by CAM-5. We have initial results on
reflection, refraction, and diffraction of sound and solitonic waves through non-
homogeneous media realized as lattic gases.

3. THE CAM-7 MULTIPROCESSOR

We have completed the essential design of a cellular-automaton multiprocessor,
called CAM-7, which will be especially useful for fine-grained models of physical
systems. In its basic configuration (a module that should cost about $400,000 for a
limited production run) CAM-7 will process 10 giga-events/sec (where an event is the
updating of a 2-bit cell as a function of up to 16 neighboring bits), and handle a cube of
512x512x512 sites. The architecture is modularly expandable.
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We intend to go ahead with construction as soon as we are free of other engagements
and the funding prospects are a little clearer.

4. FLUID DYNAMICS MODELING

The idea of modeling fluids by means of cellular automata ("lattice gas" models),
introduced by Pomeau in 1973 and independently rediscovered by us a few years later,
has recently caught the attention of the scientific community. One of the stimuli for the
more recent developments has been the availability of cellular automata machines --
which are ideally suited for simulating lattice gases. For these applications, the new
architecture offers a performance factor of 1000 to 10,000 over the architecture of
ordinary scientific computers; as a result, what had been introduced merely as
conceptual models are becoming effective computational tools. Some of our work in
this area has been published in Phys. Rev. Letters [3] and mentioned (in a badly
digested form) in Nature.

5. COMBINATORIAL DYNAMICS

We have obtained results of a truly novel kind: one concerning the reduction of
variational principles to combinatorial dynamics, and the other concerning the reduction
of special relativity to combinatorial dynamics. These and other results in information
mechanics have been pushed on the stack, waiting for their turn to be written up.

We have also continued work on quantum computation [4], and on the construction of
energy-like invariants in reversible cellular automata [1].

6. CA '86

T. Toffoli has been organizing, with C. Bennett and S. Wolfram, a conference,
CELLULAR AUTOMATA '86, to be held at MIT on June 16-19, 1986. This conference
will bring in about 150 participants, of which about 50 will give contributions in the form
of lectures, posters, presentations, demos, etc. Full-length papers will go through
refereeing and will be published as conference proceedings.

7. NEURAL NETWORKS

E. Goles and G. Vichniac have constructed Lyapunov functions for parallel neural
networks [2]. The field of neural networks has enjoyed a renaissance since 1982 after
J. J. Hopfield has expressed complex networks dynamics as an optimization process,
where the local minima of Lyapunov functions can be used as content-addressable
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memories. Our work extends Hopfield's result to the exciting case of parallel network
dynamics, and connects neural networks to cellular automata.

8. STATPHYS-16

G. Vichniac has been active in the organization of STATPHYS-16, a large physics
conference that meets every three years. He has insured a good representation of the
MIT Cellular Automata Machine (CAM), physics of computation, cellular automata
theory, and neural networks.
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1. SUMMARY

During the past year we have continued our work on the design and implementation of
Argus, and we have also succeeded in bringing Lip an implementation of CLU on the
M68000. In addition, we have continued our study of general issues in distributed
systems, including work on concurrency control techniques [40], and on techniques for
converting single-site programs into servers suitable for use over a network [6]. In the
sections that follow we discuss ,c-me of this work 'n more detail. Section 1.1 discusses
our work on Argus over the past year. ,.fection 2 describes an app!ication written in
Argus and some preliminary conclusions about the expressive power of Argus. Section
3 describes a technique developed for specifying the behavior of distributed systems.
Finally, Section 4 describes work on the availability provided by a number of replication
techniques.

1.1. A.gus

Argus is a programming language and system that supports the construction and
execution of distributed programs that run on a number of computers connected by a
network. It provides novel linguistic mechanisms, in particular, guardians, which allow a
distributed program to be modularized in an effective way, and atomic actions, which
allow computations in a distributed environment to behave properly in spite of
concurrency and failures. Argus is described in [24][25].

During the past year we have continued working on both the design and
implementation of Argus. In the area of design, we have made a number of rather small
changes to the language that enhance its usefulness, and have documented these
changes and the current status of Argus in a revised reference manual [23]. One
important change is the addition of closures to Argus. We have also studied the name
clash problem. This problem arises in polymorphic interfaces that require their type
parameters to have certain operations. For example, consider a parameterized sort
routine that works on array[t] provided t has an operation named "<" that compares two
elements of type t to see if one is less than the other. Now consider a type S that has
an operation that does the less-than test but that has a different name than "<". If sort
requires that the operation be named "<", it would not be possible to pass an array[S] to
sort, and the usefulness of sort would be more limited than necessary. We have
worked out a general scheme for avoiding this problem in Argus. The scheme works for
types like S where the operation exists but has the wrong name; it also allows a type
without the needed opeiation to be extended by providing a procedure. Note that the
name clash problem also arises in object-oriented languages such as SmallTalk.

We have continued to work on the Argus implementation, and have completed a
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prototype that runs on Vaxes under Berkeley Unix 4.2. A major accomplishment has
been the incorporation of stable storage into the implementation. The design of our
stable storage system is described in [30].

Another major accomplishment is the design and implementation of the X-Window
system. This system was initially developed primarily for use in the Argus system,
especially in the debugger. It has since been adopted by Project Athena as the primary
window system for their workstations, and by DEC for some of their products.

Much of the implementation effort has been focused on debugging. An interactive
debugger has been implemented, permitting users to control the execution of processes
and to examine the values of variables and objects while programs are running. This
approach to debugging is described in [36]. The debugger's user interface uses the X-
Window System to present each guardian and process in a separate window. This
interface seems much easier to use than an earlier one that required the user to
manage many processes through the same window.

2. EVALUATION OF ARGUS

Our experience in writing application programs has led to some tentative conclusions
about Argus. In general, the experience has been quite positive: it is easy to get a
prototype of a distributed application up and running quickly. In addition, our work on
applications written in Argus, such as the attempt by R. Leidhammar to write a
telephone switching system, has given us insight into the expressive power of Argus.
There are some areas where we have noticed difficulties; these are discussed below.

In this section we summarize our experience implementing CES, a distributed
Collaborative Editing System, which was developed by R. Seliger and implemented in
Argus. We extract from CES a set of representative requirements for distributed
applications, and evaluate the support provided by Argus for meeting those
requirements. The material in this section is abstracted from [13].

As its name implies, CES serves several purposes. First, it provides long-term
storage of structured documents, such as books and articles. Second, it provides an
editing facility that is based on document structure. Third, it permits several authors to
collaborate in writing a document. Collaboration can take many forms. For example,
differe.nt .uoS could edt the same sectiun of a document at different times, each
completing a draft before the next begins editing. Alternatively, co-authors could edit
different sections of a document simultaneously.

CES was implemented as a distributed application, rather than on a single centralized
machine, partly to explore the needs of and methods for building distributed
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applications, and partly because the requirement to support collaboration demands a
distributed implementation in today's network environment. For example, co-authors
might work at geographically distributed locations. CES could not be implemented as a
centralized system using "remote login" facilities to provide access for remotely located
users without violating the application's autonomy and availability requirements, which
are discussed below.

CES exhibits a number of requirements common to many distributed applications:
1) Distribution. CES must support clients using geographically distributed

computers connected by a network. Clients should have to deal with the
distributed nature of the system as little as possible; i.e., the system
should be location transparent as much as is possible.

2) Sharing. Clients should be able to share documents and sections of
documents. This is essential to support collaboration.

3) Autonomy. Documents, or sections of documents, should belong to
individual clients. A client should be able to control the sections of
documents that he owns; he should be responsible for supplying storage
to hold them, and only them, and should be able to prevent others from
accessing them.

4) Reliability. The system should be resilient to crashes and other failures
(e.g., network problems), in that it should be very unlikely to lose data
because of a failure. In addition, the system should be available in the
presence of failures: even when one or perhaps several machines have
crashed, clients should be able to access information stored in the
system.

5) Reconfiguration. The system should be easy to reconfigure, so that sites
can be added and deleted as the hardware configuration changes.

6) Concurrency. The system should permit users of the system to edit
documents at the same time. In doing so, the delays encountered by one
user because of another user's activities should be kept as small as
possible. (The latter is necessary to meet the performance requirement
below.)

7) Consistency. The data stored in the system should remain consistent
even in the presence of concurrency and failures. Notice that this may
require some limitations on concurrency.

8) Performance. The system should provide reasonably fast response to
users. Notice that the distributed nature of the system can both help and
hurt performance. The ability to run severa! computations c.ncrre".h on

different machines may improve performance. At the same time, the need
to send messages over the network to accomplish a task may hurt
performance.

9) High-Quality User Interface. The semantics of the system as seen by
users should be reasonably simple; for example, the distributed nature of
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the system, and the presence of concurrency and failures, should not
cause unusual or surprising behavior to occur. In addition, the editor's
interface should permit easy access to a document's structure, or outline,
in addition to the text in the document.

Obviously, some of these requirements conflict with each other. For example, the
desire for sharing can conflict with the need for autonomy. In addition, the requirements
should not be taken as absolutes. For example, regardless of how the system is
implemented, it will always be possible for a sufficient number of failures to cause data

to be lost, or to make data inaccessible temporarily.

As noted above, CES was implemented in Argus. Argus was designed to support the
construction of reliable distributed applications, and thus contains features targeted at
many of the requirements listed above. For example, Argus provides guardians, which
are the units of distribution. Guardians can be created and destroyed dynamically, and
thus support reconfiguration. Stable storage can be used in guardians to store data that
needs to survive crashes. Argus also permits concurrent and shared access to data

stored in a guardian. Atomic actions can be used to ensure consistency in the presence
of concurrency and failures.

The features provided by Argus made it quite easy to meet many of the requirements
listed above. For example, the distribution, sharing, and autonomy requirements were

easily met by using guardians on each client's computer to store the parts of documents
owned by that client. The resilience requirement was met by a combination of stable

storage and atomic actions, while the availability requirement was met by implementing
a standard replication algorithm [12] to enhance availability in the presence of failures.
Similarly, the consistency requirement was met by using atomic actions, while the
concurrency requirements were met in part by keeping atomic actions relatively short,
and in part by implementing user-defined atomic types [38][39].

Argus also proved to be an excellent development and debugging environment. The
system manages network communications and installation of guardians at remote sites,
and provides a powerful set of distributed debugging tools. In addition, atomic actions
proved to be very convenient for controlling concurrency and handling failures such as
site crashes.

In several areas, however, we found the requirements for CES difficult or awkward to
meet. In general, the problems arose because of combinations of requirements, rather
than individual requirements. For example, the concurrency and performance
requirements dictate a high level of concurrency in the processing of concurrent users'

,commands. At the same time, the consistency requirement dictates certain limits on
concurrency. Atomic actions were used to ensure consistency; to achieve a high level
of concurrency, user-defined atomic types [38][39] were implemented. However, as has
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been noted by Weihl [38][37J, the mechanisms provided by Argus for building user-
defined atomic types are limited in their axpressive power, primarily because no user
code runs when an action commits or aborts. We encountered similar limitations.

The requirement for a high-quality user interface led us to implement CES using a
high-resolution bit-mapped display, using separate areas of the screen to display a
document's structure and particular parts of a document. The display can be viewed as
a kind of cache for the data stored in the system. Obviously, a user would like to see

characters appear on the display as they are typed. To meet the performance
requirement, however, it is necessary to include several editing changes in a single

atomic action. If such an action aborts, the display must be updated to be consistent
with the data stored in the system. Keeping the display consistent with the internal data
as atomic actions commit and abort, however, turned out to be awkward and somewhat
inefficient.

The resilience requirement was met by using stable storage, and the concurrency
requirements were met in part by keeping atomic actions short. Stable storage is
updated whenever a top-level atomic action commits. (Argus provides nested actions,
not just single-level actions.) If actions are short, stable storage can be updated
frequently. To meet the performance requirements, the amount of data to be written to
stable storage when a given action commits must be kept relatively small. Argus
provides mechanisms for controlling the granularity at which data is written to stable
storage. However, we encountered modularity problems arising from the existence in
Argus of two encapsulation mechanisms for data: a conventional data abstraction
mechanism for local data within a guardian, the cluster (borrowed from CLU [19]), and
guardians themselves, which provide operations that permit access by remote users.
Part of the reason for this distinction in Argus is historical: Argus is based on CLU, and
it was convenient to retain clusters for local data. However, as discussed in more detail

in [13], there are also technical reasons why this distinction may be important. In fact,
many other systems have a similar distinction: one mechanism is used to build local
data, while another is used to build remotely accessible objects (e.g., see [5][1][35]).
One of our conclusions is that some of the functionality available in building remotely
accessible objects would be useful in building local data as well.

A final problem involved the desire for a simple user-visible semantics. In certain
cases, a user could type some characters in a part of a document and then display that
part of the document on a different part of the screen, and the characters just typed
would not appear until after several seconds. This behavior is at best surprising. The
source of the problem involves the manner in which the Argus system propagates
information about the commits and aborts of multi-site atomic actions from site to site.
In fact, the current semantics of Argus appear to make it impossible to avoid this kind of
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surprising behavior. Subtle changes to the language semantics would make it relatively
straightforward to solve this problem. However, these changes appear to require a
more complex and less efficient implementation. Current research is directed at
understanding whether this problem can be solved efficiently.

The design of CES represents one way of resolving the conflicts between the various
requirements; different designs would lead to different detailed requirements, and might
result in a system that would be easier to implement. However, we feel that the
problems we encountered in implementing CES are quite general, and that they
illustrate basic difficulties with certain aspects of the design of Argus. It is important to
emphasize that our overall experience in using Argus to implement CES was quite
positive: a reasonably efficient implementation of a complex distributed application was
built in a relatively short time. The problems we encountered indicate a need for further
research to deepen our understanding of techniques for implementing distributed
applications.

3. SPECIFICATIONS OF DISTRIBUTED PROGRAMS

In [22], Liskov and Weihl propose a method for specifying distributed programs. Such
programs often have a number of performance requirements that make them difficult to
specify. First, they are typically concurrent and may require a high degree of
concurrency. In addition, they may need to be highly reliable (i.e., unlikely to lose
information entrusted to them) or highly available (i.e., needed information is likely to be
accessible), and they may need to have fast response time. These requirements often
have an effect on the functional behavior of a program, forcing designers to change
their initial expectations. In this section, we sketch how the method from [22] can be
used to give user-oriented specifications of the functional behavior of programs with
such requirements.

Like user-oriented specifications of sequential programs, specifications of distributed
programs should be expressed in user-oriented terms and shoud be free of
implementation detail. We show how to give such high-level specifications. We claim
that our approach need not lead to the loss of any information that is of use to the users
of a system, and that it is possible to give a high-level specification that accurately
describes the relevant aspects of a system's behavior. We support this claim in [22] by
giving specifications of a number of programs in the literature, one of those examples is
summarized below.

We view a distributed system as an abstract object that can be used by calling various
operations. Thus, the system is an instance of an abstract data type [26][21][14]. The
specification of a system describes all relevant constraints on its observable behavior;
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this includes the behavior of the operations called by users and, if the system is active,
internal operations that are run by the system itself. The user of a system could be a
program or, if the system is interactive, a person. A system may have concurrent users,
and these users may invoke its operations in parallel.

In our specifications, each operation is viewed as an atomic action. Atomic actions
have been widely studied in recent years as a way of organizing programs that must
cope with concurrency and failures (e.g., see [9][3][32][28][27]). Atomic actions have
two important properties: serializability and totality. Serializability means that the
concurrent execution of a group of actions is equivalent to some sequential execution of
the same actions. Totality means that each action is all-or-nothing: either it executes

successfully to completion (in which case we say that it commits), or it fails and has no
effect on the state of the system (in which case we say that it aborts).

Viewing each operation as atomic greatly simplifies specifications. It means that
operation invocations, even those executing in parallel, never appear to overlap; instead
two such calls appear to occur in some sequential order. Furthermore, if for some
reason it is impossible to complete a call, it aborts. This means that the specification is
simpler and easier to understand for both users and implementors of the system.

In effect, what we get from atomicity is the ability for a user to view the program as

sequential even when it is not. The state of the program when some operation is
invoked is viewed as the result of the executions of all earlier committed calls, where
these executions are performed in their serialization order. In other words, in the
specification we can assume that operations are executed sequentially rather than
concurrently. Furthermore, we need only consider operations that commit; effects of
aborted actions can be ignored.

Note that a specification that views each operation as an atomic action does not

constrain the implementation to execute each operation atomically. Several authors
(e.g., see [4][10][11][17] [34]) have claimed that atomicity is incompatible with satisfying
various requirements such as high availability or high concurrency. However, we can
give specifications of systems with such requirements and with atomic operations. The
authors mentioned above are right that atomicity at the level of the implementation is
sometimes incompatible with performance requirements like availability and
concurrency; however, this does not preclude using atomicity in the specification. An

analysis of the concurrency and availability permitted by atomicity can be found in
[38][16].

We propose a structure for specifications that distinguishes expected and desirable
effects from undesirable ones. (A similar approach was proposed in[18].) We believe
that this distinction is an important one for both users and implementors of a system,
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and that it makes the specifications easier to understand. Our specifications are
informal, in the sense that we do not give a precise mathematical meaning for them. An
important open problem is to provide a precise meaning for these kinds of
specifications.

In the remainder of this section, we look at a simple example, taken from [10], and
show how atomicity can be used to write a high-level specification that avoids
implementation details. In this example, the goal is to achieve high availability. We also
summarize the other examples from [22]. Our approach is essentially bottom-up: we
start with a description of the implementation of a system, and then discuss how to
specify that system in user-oriented terms. We take this approach to illustrate the
expressive power of our specification technique. In designing and implementing a
system, we would suggest a more top-down approach.

Fischer and Michael present an efficient algorithm for maintaining a replicated
distributed dictionary, with insert, delete, and list operations [10]. The dictionary is
modeled as a set, with insert adding an element to the set, delete deleting an element
from the set, and list returning the current members of the set.

The dictionary is to be implemented on a distributed system, consisting of a collection
of nodes connected by a network; both the nodes and the network may be unreliable.
The goal is to make the system highly available, in the sense that any operational node
should be able to perform any of the three operations at any time, regardless of the
status of the network or of other nodes.

The implementation works by processing each operation at a single node. Each node
has a copy of the dictionary. If an insert or delete operation is executed at a node, only
that node's copy of the dictionary is updated. Messages are sent between nodes
periodically to propagate information about updates. A list operation executed at a node
returns exactly those elements known by the node to have been inserted and not known
to have boen deleted. (A node knows about a previous operation if either the operation
was executed at the node, or the node has received a message from another node that
knew abjut the operation at the time the message was sent.) Because one node may
not know about some operations performed at other nodes, users are required to
ensure that any given element is inserted at most once, that an element is deleted only
if it has been inserted at some point in the past, and that the node at which a deletion
occurs knows aboui the prior insertion.

Notice that this replicated dictionary does not meet the usual specification of a
dictionary. In particular, a list operation does not return exactly those elements that
have been inserted and not yet deleted. Instead, it retur.,s only those elements that are
known at the node at which it is executed. Thus, a specification of this system must
reflect the replicated nature of the implementation in some way.

110



PROGRAMMING METHODOLOGY

Fischer and Michael s specification, however, contains implementation details that are
unlikely to be of interest to a user of the system. For example, a user cannot see or
control the internal communication, yet the specification of the dictionary depends
heavily on this communication. These implementation details also introduce the
possibility of over-specification, placing unnecessary and possibly undesirable
restrictions on implementations.

insert = proc (x: element)
requires x i Members.
effects Adds x to Members.

delete = proc (x: element)
requires x r Members.
effects Adds x to ExMembers.

list = proc () returns (sequence[element])
effects Returns a subset of Members.

Figure 7-1: Specifications of the dictionary's operations.

In Figure 7-1 we present an alternative specification of the dictionary that hides these
details. In the specification, we treat the dictionary as a logically centralized resource;
its distributed implementation is irrelevant. We model the state of the dictionary as a
pair of sets, Members and ExMembers. Members contains all elements that have been
inserted, while ExMembers contains all elements that have been deleted. Each of the
three operations described by the specification is viewed as an atomic action. The
operations preserve the following invariant on the state:

ExMembers c Members

The figure illustrates the form we use for specifications. The specification of each
operation consists of a header followed by a number of clauses. The header describes
the types of the arguments and results. The optional requires clause describes the
assumptions that the operation makes about its arguments and the state of the system
when it is called. For example, the requires clauses for the insert and delete operations
define two assumptions needed for Fischer and Michael's algorithm. Finally, the effects
clause describes the behavior of the operation when the assumptions stated in the
requires clause are satisfied; if the requires clause is not satisfied when the operation is
called, then the specification places no constraints on the behavior of the operation.

The figure also illustrates the way we approach specifications. We begin by
introducing an abstract model [26] for the system state; this model is used in defining
each of the operations. The operations are then specified operationally, i.e., they
modify or read the state.
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As with any abstract data type, the operations of the dictionary can be classified as
constructors, which modify the state, and observers, which read the state. (Sometimes
an operation is both a constructor and an observer.) For the dictionary, insert and
delete are constructors, and list is an observer. In all our specifications, the
constructors have an exact effect on the state, e.g., insert really adds the new element
to Members. However, users can only observe the state by calling the observers.
Since these typically do not allow the entire state to be observed, e.g., list only returns a
subset of the state, users cannot necessarily see the effects of the constructors.

The key idea in these specifications is the use of nondeterminism to model the delay
between the execution of the constructors and the propagation of their effects on the
state to later operations. Thus, the specification of list is nondeterministic. Using
nondeterminism in this way enables us to hide both the existence of multiple copies of
the dictionary at different nodes, and the communication among nodes.

The specification in the figure does not match the specification given earlier in one
respect: the requires clause of delete does not state the constraint that the node at
which the deletion is executed must know about the insertion of the element to be
deleted. To state this requirement, we would need to expose the existence of nodes in
the specification. It would not be difficult to add the nodes to the specification. (We
would model the multiple copies in the state. In addition, the operations would all have
as an extra argument the node at which the call is to run.) We chose not to do this
because our specification si presses information that is not of interest to users, and is
thus more user-oriented.

When it is impossible to give an accurate description of a system without exposing
information that is not relevant to users of the system, we should consider whether
different decisions should be made, so that the specification need not expose such
details. One virtue of specifications is that they serve as a warning flag by bringing such
questions to our attention. They help the designers to make an informed decision,
where the impact on the user is well-understood.

Of course, a specification is of interest only if it can be implemented efficiently. For
example, can the specification in the figure be implemented as efficiently as the
algorithm of Fischer and Michael? We have done such an efficient implementation for a
system very similar to the dictionary. Our system is part of an orphan detection
algorithm [20]; its specification is essentially the one given in the figure. Its
implementation must store information about deletes explicitly, where Fischer and
Michael need not do this, but we can use garbage collection to discard this information
as soon as all nodes know about the delete.

The specification given above describes the behavior of the dictionary in high-level,
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user-oriented terms, but does not capture some important aspects of its behavior. In
particular, it does not indicate what a list operation is likely to return. What is needed is
an approach that permits us to distinguish the normal, expected behavior (e.g., that list
returns exactly those elements that have been inserted but not deleted) from other kinds
of behavior that, although still possible, are less likely and less desirable.

We suggest the following simple approach. divide the effects clause of a specification
into two parts, the normal and the abnormal effects. The normal effects describe what
the user can ordinarily expect to observe, e.g., when all nodes are up and information is
being propagated among nodes fast enough. In effect, it describes an ideal system in
which all modifications are observable immediately. The abnormal effects describe
unlikely events, e.g., what happens when there is a problem like a network partition that
prevents messages from being sent from one node to another. It describes situations
where the implementation only approximates the ideal system.

In Figure 7-2, we show a revised specification for the list operation of the replicated
dictionary; the specitications of the other operations remain unchanged. Notice that the
normal behavior of list is to return exactly those elements that have been inserted and
not deleted. It is still possible for it to return some elements that have been deleted, or
not to return some elements that have been inserted; this behavior is described as the
abnormal effects. Notice also that the abnormal effects simply repeats the normal
effects but in a "fuzzier" way. All our specifications are like this; the abnormal effects
happen when the normal effects can only be approximated.

list = proc ( ) returns (sequence[element])
normal effects Returns Members - ExMembers.
abnormal effects Returns a subset of Members.

Figure 7-2: Revised specification of list.

A specification using this notation should be interpreted as defining a nondeterministic
choice between the normal and abnormal effects. The normal effects are intended to
be much more likely to occur than the abnormal effects, but a user of the operation must
be prepared for either. A reader would mostly pay attention to the normal effects, since
this is what would happen most of the time. He would have to be aware of the
abnormal effects, but would not expect them to happen very often.

Our specification, however, does not describe the relative likelihoods of the various

needs to know the relative likelihoods of the various outcomes of an operation. For
example, it should be likely that an element that was inserted a long time ago and has
not been deleted will be returned by a call of the list operation, and similarly if an
element was deleted a long time ago it should be unlikely that it will be returned.
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Intuitively, the normal effects should be likely to happen provided the call happens long
enough after all other calls whose effects it is supposed to observe. We do not know
how likelihood should be expressed formally; we discuss this issue further below.

In [22], we also give specifications for two other systems: a banking system taken
from [11], in which the main issue is concurrency, and a real and very complicated
system, Grapevine [4], in which the major concerns are availability and fast response
time. In both cases we are able to apply the specification method sketched above to
give high-level, user-oriented specifications of the systems.

In our specifications, we used a format in which normal and abnormal effects were
specified separately. As discussed earlier, the idea is that a reader will mostly pay
attention to the normal effects, since this is what should happen most of the time. He
will have to be aware of the abnormal effects, but should not expect them to happen
very often. To really understand how to interpret "normality," however, the reader
needs to know the relative likelihoods of the various outcomes of an operation. It might
be useful to associate probabilities with the different outcomes of an operation, or to
rank them in order of preference. It is not clear, however, how to give a precise
mathematical meaning to such specifications. This is an area where more work is
needed.

Another way of specifying systems like these is to use the "eventually" operator of
temporal logic [29] to require that the results of an update will eventually be visible to
later operations. This gives a result similar to what we obtain using nondeterminism,
since nothing is said about when the results will become visible. However, there are
several problems with using "eventually." The first is that it may be too strong, since if
enough failures occur at inopportune times it is possible (though perhaps extremely
unlikely) that something might never happen. This should not mean, however, that the
system has failed to meet its specification. For example, in Grapevine, a message
might never be delivered, and no trouble message sent either, but this does not mean
that the system is broken. A specification that required all messages to be delivered
eventually would not be satisfied by Grapevine, or by any realistic implementation.

The second problem with "eventually" is that it does not say enough. Simply requiring
that something happen eventually does not tell a user how long t can be expected to
take to happen. This is also a problem with our specifications, slice they do not
I,uite how long one shouid wait to be reasonably certain that the normal effects will
happen. This, too, is an area that deserves further study.

Another problem is that a specification that requires something to happen eventually
does not indicate which results are more desirable than others. We believe that the
distinction between normal and abnormal effects made in our specifications is important
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for both users and implementors of a system. For examp!e, such specifications could

serve as a basis for comparing implementations. One implementation might be

considered better than another if the abnormal effects occur less frequently in it, or if the

normal effects happen more quic!dy. Again, this is an area where more work is needed.

In our specifications, we view each operation as an atomic action. As mentioned

earlier, this greatly simplifies specifications, yet does not overly constrain

implementations. Notice also that this does not preclude multi-step behavior. For

example, in our specification of Grapevine, we introduce an internal operation that

actually delivers mail; the operation called by users to send mail does not deliver the

mail immediately, but instead queues it for later delivery. In effect, Grapevine is a "mail

spooler" just like a spooler for an I/O device. In any such system, there must be a

source of activity that is independent of operations called by a user to carry out the work

that is done later. In the specification of Grapevine in [22], we modeled this activity by

the internal operations deliver and reap. Like all operations, these extra operations are

atomic.

We claim that our specifications accurately describe the aspects of each system's

behavior that are relevant to the system's users. For example, in the Fischer-Michael

example, knowing that the replicas seid messages to one another does not help the

user understand how quickly a given addition or deletion will propagate. Similarly, in

Grapevine, knowing that servers communicate by sending messages does not help the

user understand how soon mail will arrive. Therefore, our specifications, in which the

delay in information propagation is modeled by nondeterminism, are as informative to

the user as this extra detail. (The extra detail is clearly of interest to a system

implementor or maintainer, but our specifications are not intended for them.)

The advantage of specifications is that they make it clear exactly what interface a

program provides. Specifications provide valuable information not only to users of a

system, but to designers. Users, of course, need to know what behavior they can

expect to see. For example, a user of Grapevine needs to know all the situations that

might happen, even if some are unlikely to occur (e.g., the problems with adding and

deleting names, registries, and servers). Similarly, designers need to decide if they

have made the right decisions. Given the specifications, they can decide whether the

interface is what is wanted. Different designers might make different decisions; the

important point is that they need a clear understanding of a system's interface in order

to decide if the trade-offs made during design are justified.

Our approach here has been primarily bottom-up: we started with a description of the

implementation of each system, and then described how to specify that implementation

in user-oriented terms. Program design, however, should be driven primarily by the
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user's requirements, and thus should take more of a top-down approach. For example,
one might start with an relatively strong specification (e.g., without any
nondeterminism), and gradually weaken it by introducing nondeterminism and abnormal
effects as the implementation constraints become better understood. At each stage, the
specification could be used to help evaluate decisions, since it makes evident the
effects on the users.

4. LIMITATIONS ON AVAILABILITY IN THE PRESENCE OF
PARTITIONS

In designing fault-tolerant distributed database systems, a frequent objective is to
make the system highly available in spite of component failures. We measure
availability as the fraction of transactions presented to the system that complete. One
technique to increase data availability is replicating the data at various sites in the
network. In [7], we examine several replicated-data management protocols that
malhtain databade consistency And atterilpt tb nake replicated data highly availble irl
the presence of network partitions. (Partitions are failures that divide a system into two
or more components between which communication is impossible.)

The protocols we examine in this paper maintain one-copy serializability [2][31], and
are of the on-line kind, that is, those that are required to make irrevocable commit/abort
decisions at the time the transaction is processed. We do not consider other classes of
protocols, such as off-line protocols that can defer commit/abort decisions until the
partitions are rejoined; protocols that abandon one-copy serializability as the
correctness criterion; and protocols that use type-specific information. Davidson's
optimistic protocol [8] is an example of an off-line protocol. The partition-tolerant
distributed databases project at the Computer Corporation of America [33] is an
example of a system that abandons one-copy serializability to achieve higher
availability. Herlihy [15] deals with replication methods for abstract data types.

The main objective of replicated-data management protocols is achieving availability
while maintaining data consistency. No protocol whose correctness criterion is one-
copy serializability can do better than a bound we have determined, under the
assumption that the pattern of data accesses by transactions obeys a certain uniformity
assumption that we explain. We believe this assumption is a reasonable one if we
know nothing in particular about the transaction distributions; there might be some
particular distributions for which specialized protocols achieve greater availability.
Furthermore, this assumption permits us to do the analysis.

In the context of a simple model we have developed, we analyze the level of
availability achieved by several replicated-data management protocols proposed in the
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literature. The protocols we look at use different rules to increase data availability
during a partition. Given the authors' informal discussion of availability achievable by
these protocols, it is difficult to determine how one protocol compares against the
others. We provide a uniform basis for comparison. In addition, we show that several
of the protocols achieve the upper bound for availability, so the bound is tight.

Our analysis shows that there is a severe limitation on the availability that can be
achieved during a partition. Because of this limitation, networks should be designed to
minimize the probability that partitions will occur. In the rest of this section, we present
the bound on availability. An analysis of existing protocols, showing the extent to which
they achieve the maximum possible availability, can be found in [7].

4.1. Assumptions and Definitions

The context of our work is a distributed database system in which the data is fully
replicated. This system consists of a collection of n sites, numbered 1,...,n. We have
chosen this special case of a distributed database system because it simplifies our
analysis. Transactions can operate on data items by reading or updating. We assume
no blind updates, where a blind update is one that updates a data item without first
reading it. The set of data items updated by a transaction is called its write set.

A partition occurs in a system when two functioning sites are unable to communicate
for a significant interval of time. A maximal set of sites that can communicate with one
another is called a partition group, following Davidson [8]. We make the simplifying
assumption that a partitioned network consists of only two partition groups, called a
majority partition and a minority partition. This simplification does not change our
conclusions because we believe that this kind of partition is rare and that more
extensive partitioning is even rarer; we analyze the most common case. We define L,
as the load on the system for a site j based on the fraction of transactions that run there.
That is, L, is the number of transactions initiated at site j divided by the total number of
transactions.

Then a set S of sites is a majority if and only if ZsES L > 1/2. We use this somewhat
nonstandardi ..... of maoirity because it ensures the desirable property that during

a partition more than one-half of the work submitted to the system is submitted to the
majority partition.

In this paper, we are interested in availability. It is a measure of the amount of work
that can be done by a system. We define availability as follows: the availability
achieved during an execution is the number of transactions successfully completed
divided by the total number of transactions presented to the system. We do not study
other aspects of performance, such as the relative expense of read/write operations or
the cost of rejoining partitions.
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In order to quantify our observations concerning availability, we are interested in the
following parameters.

" t = total number of transactions presented during the partition

" uma, = fraction of t that are update transactions and are in the majority
partition

" Umin = fraction of t that are update transactions and are in the minority
partition

" rmaj = fraction of t that are read-only transactions and are in the majority
partition

* rmin = fraction of t that are read-only transactions and are in the minority
partition

4.2. Analysis

We now show that no on-line replicated-data management protocol that maintains
one-copy serializability can achieve a level of availability that is better than Umaj + rmaj +
rmin.

Our proof depends on an assumption regarding system workload, which we call the
uniformity assumption. The uniformity is described formally in [7]. One informal
characterization, which is sufficient for the uniformity assumption to be satisfied, is that
the transaction mix be the same at each site. For example, suppose 10% of the update
transactions run at site 1; then our assumption says that of those transactions that
update a set of data items, 10% of them run at site 1.

We find it convenient to formulate the following correctness property, which in
Theorem 1 we show is a necessary condition for maintaining one-copy serializability.

Correctness property. For all data items d, d is not updated on both the minority and
majority sides of a partition.

Theorem 1. Any replicated-data management protocol that preserves one-copy
serializability satisfies the correctness property.

The following lemma is central to our proof of the upper bound bound on the
availability achievable by a replicated-data management protocol that maintains one-
copy serializability.

Lemma 2. Let a be any replicated-data management protocol that satisfies the
correctness property and that operates in a system in which the uniformity assumption
holds. Any execution e of protocol a during a partition has availability at most uma +
rmaj + rmin.
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The following theorem provides an upper bound on availability.

Theorem 3. In a system where the uniformity assumption holds, no replicated-data
management protocol that maintains one-copy serializabil!ty can achieve availability
greater than Umaj + rmaj + rmin.

Proof. Assume that there exists an protocol a that has availability greater than uma +
rmaj + rmin. By Lemma 2, protocol a violates the correctness property. By Theorem 1,
protocol a does not preserve one-copy serializability. Contradiction. o

Our analysis shows that there is a severe limitation on the availability that can be
achieved during a partition. Because of this limitation, networks should be designed to
minimize the probability that partitions will occur. We believe that it is technically
feasible to make network partitions highly unlikely by building sufficiently reliable
networks using a combination of the following techniques: high connectivity; software
security, such as preventing malicious application programs from corrupting the
operating system or gateway; and physical security, such as keeping people away from
the machines.

But even though the likelihood of a network partition may be small given such a
sufficiently reliable network, software should still preserve one-copy serializability in the
presence of partitions. A system should not fail in a catastrophic way. When choosing
a replicated-data management protocol from among several, the criteria one uses need
not necessarily be availability alone; other factors, such as ease of implementation and
cost of repairing a database when partitions rejoin, should be considered as well.
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1. INTRODUCTION

The Programming Systems Research Group has been engaged in work over the past
year that looks beyond present local area network assumptions, and explores new

types of very large scale computer system architectures. Specifically, we have been

investigating a new design for large scale distributed database systems that use
database content labels to route queries to appropriate database servers. Within this

framework we have been interested in the problems of building very large databases,

both in terms of size (> 1 GByte) and in terms of geographical scope.

In order to test our architectural ideas, we have built a database system called the

Boston Community Information System that we presently operate in the Boston area at

over 200 sites. This progress report describes this system, with an emphasis on the

unique way in which processing in the system is divided between a confederation of

shared servers and private personal systems.

Each personal system maintains a local, user-defined subset of the database that is

stored on the shared servers. Database updates are transmitted to the personal

systems via a broadcast packet radio system. This design allows many queries to be

completely processed at a user's personal machine, and thus reduces the reliance on

shared servers.

A unifying design principle is that the system is comprised of a collection of

independent personal and server databases, as opposed to a single monolithic

database. Query routing is used to hide the system's division into component

databases from the user. The detailed design of the shared information system and the

personal d'-o,,ase system are presented, along with reasons for our design decisions,

and a review of how the design has worked out in practice.

2. PLANS FOR THE NEXT YEAR

Over the next year we plan to:
" Add new database servers, database sources, and database users to test

the robustness of our present implementation.

" Gather information from the users of the database system to gain insight
into the strengths and weaknesses of the system.

" Develop a new communication protocol for distributed systems that will
combine the flexibility of remote procedure call with the efficiency of bulk
data transport. Once we have developed this protocol, we will test it in the
context of the experimental system that we have built.

" Experiment with a new approach to database services by using electronic
mail as an infrastructure for database queries and responses.
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3. OVERVIEW OF THE BOSTON COMMUNITY INFORMATION
SYSTEM

This progress report describes a new experimental large scale community information
system which was developed and is now operating in the Laboratory fcr Computer
Science at MIT. The system is presently in use in Boston area homes, and provides
users access to a number of information sources, including the New York Times, the
Associated Press, and electronic mailing lists.

The system combines personal computation, broadcast digital communication, two-
way communication, and centralized mass storage in a unique way. A unifying principle
of the system is that it is composed of a collection of independent shared and personal
databases, as opposed to one large monolithic database. Query routing is used to hide
the division in function between the system's component databases.

The goals of our project look forward to the time when most information is
communicated to the home and office by digital means. Today most information arrives
on paper, which is intrinsically bulky. Digital delivery will make a wider range of
information sources available to everyone, and computers will provide the necessary
power to filter and process the large volume of information that will be received. These
future systems may also be used to contribute information to public databases, as well
as to conduct banking, shopping, and other transactions.

Our system design goals include:
* A cost effective way to build a system large enough to serve an entire

metropolitan area;
* A high-quality user interface that is easily learned by naive users;
* Privacy for each user of the system;
= Protection, to restrict system access to authorized users;

* User autonomy, to allow users to process information drawn from the
system in any way desired; and

* Flexibility, to enable new applications to be easily added to the system's
existing infrastructure.

Our approach to these goals was to utilize personal computers for most processing
tasks in order to minimize reliance on centralized servers. The system therefore
consists of two major components: a set of shared servers operated at a central
location, and a large number of personal computers, possessed by the users. The
personal computers help us reach our economy, autonomy, privacy, and user interface
objectives, while the shared servers provide the traditional advantages of access to a
large database.
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In this approach, it does not suffice to use the personal computers as mere terminals.
We wanted frequent requests to be completely processed at the personal systems as
often as possible. Our solution was to build a personal computer based database
system with a high-performance user interface designed to operate autonomously from
the shared servers. This approach seemed prudent -- although a personal computer
cannot hold all of the information that might be available to a user, these computers are
certainly capable of holding the information that would be of most use to a particular
user. To ensure that most requests can be completely processed at the local database,
a user completely specifies the information which will uniquely comprise his database's
contents. When a request can not be satisfied by the personal system alone, shared
servers are utilized. The use of shared servers is transparent to the user.

The integration of personal computers and shared servers into a single database
environment poses a number of interesting research issues. For example, in order to
ensure that our users can remain unconcerned with the mechanics of the system's
operations, we chose to provide a single system image. We decided to make each
database autonomous however, so that the system would be comprised of a large
number of independent databases. Database content descriptions are used to route a
given request to an appropriate set of databases.

Another issue that arose surrounds the requirement that large scale systems must be
able to adapt to changes in infrastructures. We did not want to ase our design on
either specific communication channel or personal computer characteristics. As
technology develops we will be able to integrate new components into our system and
improve its functionality and performance.

We decided not to assume that high bandwidth communication (greater than 100
KBits/sec) is available within a community. Thus a technical challenge was to build a
system that isolated users from the effects of low to moderate bandwidth
communication (1.2 - 9.6 KBits/second). This was accomplished by a careful design of
the user interface, to ensure that the user can proceed while communication continues
in the background. The personal database system incorporates a multi-process
structure which enables it to perform communication tasks while simultaneously
responding to user requests.

An overview of the system is shown in Figure 8-1. The shared servers shown in the
figure are located at the Laboratory. Each server contains one or more independent
databases, unified by a query routing module. Some databases are replicated on more
than one server in order to improve reliability and performance. As shared servers
receive new information it is scheduled for transmission to the personal systems via a
broadcast packet radio system. The number of times that a database item is
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transmitted, and how it is protected, depend upon the item's type. The broadcast
transmissions are received by the personal systems, where a background task uses
them to update the local partial replica of the database. When a request can not be
processed at the personal system, a connection is automatically established to the
appropriate shared server.

The remainder of this report presents the components of the system, starting at the
user interface and working to the shared server system. Section 4 introduces the
predicate data model, which is the user's primary interface to the system. Section 5
discusses composite databases, which are used as a building block in both the personal
and shared parts of the system. Section 6 presents the personal database system in
detail, and provides a brief overview of its user interface. The major internal structures
of the personal database system are described, along with the algorithms that are used
to support query processing. Section 7 presents the internal design of the servers. The
final three sections review previous work (Section 8), performance of the system and
project status (Section 9), and we end with some conclusions about our approach and
directions for future work (Section 10).

4. THE DATA MODEL

We have developed a new data model for storing our information which is called the
Predicate Data Model. A predicate database consists of a set of records. Each record
in the database is composed of a number of named fields. There are required fields
(such as TYPE) and any number of optional fields. A predicate database can be mutable
(records can be altered), immutable (the database can never be altered), or append
only (records can be added to a database but existing records are immutable). To date
we have implemented append only and immutable databases.

The fundamental operation on a predicate database is to restrict attention to a subset
of the re, )rds in the database. A specification of a subset of the database is called a
query, and the computation of a database subset is called query processing. Once a
subset has been selected the records contained in the subset can be displayed or
deleted.

The predicate data model provides users with a great deal of flexibility in the
formulation of queries. This is important because f the character of our users. We
assumed that our users know a few independent facts about the information that they
seek, but are incapable of producing a unique key that would lead to the information of
interest. The predicate data model permits a user to represent the facts that he or she
does know about the information of interest as terms in a query.
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Predicates and result sets are important concepts in the predicate data model. A
query is a Boolean combination of predicates. A predicate function returns TRUE or
FALSE when applied to a record, depending on the properties of the record. A record x
is in the result set of a query 0 iff 0(x). In our present database system, predicates
include selection on the basis of:

" Record type (information source)

" Subject

" Date and time intervals

* Author

" Priority as assigned by the information source

" The appearance of user-specified words or phrases.

The predicate data model has two advantages over traditional data models, of which
the second is directly relevant to the topic of this report. The first advantage is that the
predicate data model is very well adapted to dealing with text and other semi-structured
information that cannot be easily indexed within the framework of more traditional
approaches. Research suggests that predicate based approaches may be preferred by
both novice and experienced users [2].

The second advantage, and the one that is of interest here, is that the predicate data
model provides a framework for reasoning about the contents of databases. Most
traditional systems make a closed world assumption: if a piece of information is not
found in a database, then it does not exist. This assumption of course does not apply to
our system, where there are many databases, not one, and no one database contains
all-available information.

In order to determine where a query can be processed we must be able to reason
about which database(s) contain the information which has been requested. Figure 8-4
illustrates the type of problem we are trying to solve, with two databases and three
queries expressed as Venn diagrams. Query Q1 describes a potential result set that is
odly partially contained in DB1, but is guaranteed to be completely contained in DB2.
Thus, we would process Q1 at DB2. Query Q2 describes a potential result set that is
only partially contained in DB2. In this case we cannot guarantee that the result of
processing Q2 at DB2 will locate all information of interest. Our approach is to have the
system suggest another query to the user, 02', which represents the intersection of
DB2 and the potential result set of 02. If the user confirms, this query can be
successfully processed at DB2. The final case is represented by query Q3, which is
disjoint from DB1 and DB2. This query cannot be processed, regardless of how it is
extended, and is rejected.
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The ability to reason in this manner about the queries presented to our system is

central to our strategy for query processing. A happy consequence of the query
language is that it can be directly used to formally describe the contents of databases.

Let DB be the description of a database, phrased in terms of predicates. For example,

DB could be a formalization of the statement that a database contains all information

from the New York Times for March 1985.

Database content descriptions and queries are formalized in a logic that is equivalent

to the statement calculus. Therefore, any statement concerning queries and database

contents in our formalism is decidable.

In order to show that a query Q can be processed at a given database DB, it is
sufficient to demonstrate that the statement Q(x) -> DB(x) is true. This implies that the

set of records that can be described by Q is a subset of the records contained in DB.

By checking the truth of statements other than Q(x) -> DB(x) we can determine when

there is an intersection between Q's potential result set and DB, and when they are

disjoint. When Q's potential result set is not complh.tely contained in DB, we attempt to
add the fewest number of terms possible to Q to make its potential result set a subset of
DB.

The Predicate Data Model allows us to view several 'simple' databases as a single
'composite' database, as described below.

5. COMPOSITE DATABASES

Under the predicate data model, the contents of a database can be described by a

boolean combination of predicates. This means that the joint contents of a set of

databases are described by the disjunction (logical OR) of the expressions that describe

the component databases. Given any query that falls within the scope of a composite

database, the result set can be obtained by submitting the query to the component

databases, and taking the union of the results obtained.

The expressions that describe the component databases can be used to determine

where in the composite database certain information can be found. This gives rise to

the concept of query routing. Rather than submitting the query to all the component

da.Ab .( s, It .UIces to subit It oan V"ny set of 1; C o-1 o m onent for which the dI sjunction of

the contents descriptions is implied by the query.

A similar procedure can be used to apply updates to a composite database. A given

update could be applied to each component, but it suffices to apply the update to the

components whose descriptions match the record.
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In our system each server is implemented as a composite database. Information is
assigned to component databases based on the information's type and time of
acquisition. Every 24 hours the currently active databases are converted from append-
only to read-only status, and a new set of databases is created. Since the databases
are autonomous, they can be taken off-line without affecting the system in unexpected
ways. Only the composite database manager must note the change, and update the
predicate that describes the server's contents. Likewise, new databases can be added
to the system without causing disruption.

From the outside a composite database is indistinguishable from a simple database.
Consequently we will refer to the composite databases stored on the servers simply as
'databases'.

6. THE PERSONAL DATABASE SYSTEM

The personal database system component of our system runs on a user's personal
computer, and implements the user's interface to the rest of the system. The personal
database system is constantly performing two tasks: it processes user requests, and it
applies database updates received over the digital broadcast channel to the local
database. Figures 8-2 and 8-3 provide a view of what the user sees. Figure 8-2 shows
a set of article summaries resulting from the processing of a query; Figure 8-3 shows an
article which has been selected for display.

The function of the personal database system is presently limited to information
retrieval. We plan to add facilities that will allow users to interactively update
databases.

In order to satisfy the goals we outlined in Section 1, the system is designed so that a
user's most frequent requests can be answered from the user's personal database. To
this end a user compiles a list of routine queries into what is known as the filter list.
Each query in the filter list is disjunctively combined to create a predicate called FL (for
filter list) that describes the information that will be retained at the user's personal
computer. The personal database that results is precisely the set of records necessary
to completely process any query in FL, at the user's personal computer.

One limitation of this approach is that the predicate FL can describe more information
than can be stored on a personal system. When this occurs the system must make a
choice among the records that match FL, decicling which records to keep and which to
discard. The strategy that we use for dealing with this is to have the user list the
component queries of FL in order of importance, and to have the user associate a
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"budget" with each query in FL. If a new record arrives that matches FL and tile
personal database system has insufficient resources to store it (such as disk storage or
main memory) the personal database system will delete records from FL queries that
are over budget. If there still is insufficient room for the new record the personal
database system will delete records from the least important query in FL that is within
budget.

Since the system does not necessarily always contain all the records that match FL,
the system must maintain a separate predicate, PDB, that describes the local database
exactly. PDB is obtained by conjoining each query of FL with an additional predicate
that indicates the time elapsed since the last occasion when a record matching the
query was deleted because of resource limitations.

One of the personal database system's windows displays a user's filter list. Within this
window a user can easily change the filter list, or select for processing one of the filter
list's component queries. Thus the user interface incorporates some of the advantages
of menu based systems by allowing a user to select preplanned queries.

When a user selects a query from the filter list the system ensures that the selected
query can always be processed at the user's personal system. This is accomplished by
the system's taking the selected query and adding time predicates which limit the
query's attention to a time interval for which the local database has a complete set of
database updates. The augmented query is placed in the query input line as if the
query had been typed by the user. The user is free to edit the query input line so that it
includes other time periods, or he or she may type in any query at all.

Updates to the personal database continually arrive via broadcast transmission. The
details of the transmission medium and packet protocol are described in another report
[3].

The task of deciding how and where to process a query is called query routing. In
order to perform query routing, the personal system needs the descriptions of all
available databases. Based on the particular query with which it has been presented,
query routing uses these descriptions to determine a feasible set of databases, any one
of which could process the query. Our algorithm selects from the feasible set the
database that has the lowest estimated communication cost. If the selected database is
unavailable the next lowest cost database is selected.

A user's personal database system includes a description of available remote
databases. To ensure that this information is always available and up-to-date, remote
database descriptions are included in the database itself, and are included in the
broadcast transmissions. The user's filter list predicate FL implicitly contains a term
which matches records containing database descriptions. A consequence of this
approach is that descriptions of remote databases are automatically kept up to date.
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The overall design of the personal database system has been described, and wenow
proceed to present selected details about the database's implementation.

Implementation of the Personal Database System
Figure 8-5 shows the internal organization of the personal database system as

implemented for the IBM PC family of computers. The modules shown are used by a
collection of processes. One process reads keystrokes and mouse clicks, performs
User requests, and writes to the display. A second process receives the inCotilhg
stream of database updates from the packet radio system, and applies them to the local
database as necessary. A non-preemptive scheduling discipline is used. Thus, the
receiver process must yield at regular intervals to give the user interface process a
chance to run.

We will not describe the system's modules in detail, but we will discuss their
interrelations. The window manager reads from the keyboard and mouse, passes
completed commands to the database user interface, and does display maintenance as
requested by the database user interface. The database user interface is responsible
for implementing all commands, and for formatting database records for display. Query
routing is in charge of processing queries. As described earlier, query routing uses the
filter list and -descriptions of remote database to decide where a query should be
processed.

The local database is stored on disk, and an index is maintained in primary memory.
The amount of data that can be kept in the local database depends on the amount-of
storage available. An average news article requires 5 KBytes of disk storage, oni
approximately 470 bytes of main memory. This translates to an approximate capaci*
40 news articles for a system with a single floppy disk, and 250 news articles tou
system with a hard disk.

Our protocol for access to remote servers is based on remote procedure call. The
shared servers support the set of procedures shown in Table 1. On the personal
computer side, the RPC stub shown in Figure 8-5 serves as an intermediary between
these procedures, and a byte stream to a remote server. The interface was designed-to
include explicit flow control: each procedure invocation states how much data should be
returned to the personal database system.

The RPC stub calls the reliable byte stream module in order to pass a request to- a
remote server. An autodial modem is used to establish a connection without user
intervention. The byte stream protocol is designed to use a TCP internetwork byte
stream when a local area network is available.

The reception of database updates via the packet radio system is accomplished by the
set of modules at the bottom of Figure 8-5. Bytes arrive from the packet radio receiver
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at 4.8 KBits/second, and are placed in a 5 KByte circular buffer at interrupt level. The
size of the buffer accommodates up to a 10 second service latency. This latency can
be caused by activity in the user interface process.

The receiver process polls the byte buffer and reassembles packets. The packets
contain information for error detection and error correction. In order to help mask
channel errors, packets are transmitted more than once, and these transmissions are
separated in time. When a previously unseen packet arrives, it is copied into its proper
place in the record reassembly buffer. A bit map of received packets is maintained so
record reassembly can determine when an entire record has arrived.

Once an entire record has arrived, it's master key is looked up on the key ring. If a
matching key is available, the record is decrypted. If the incoming record matches the
filter list predicate, it is presented to the local database. The record may or may not be
retained, depending on resource availability and on the record's priority relative to the
information already present. The match module was designed so that the time required
to match an incoming record is independent of the complexity of the filter list.

This concludes our discussion of the design of the personal- database system. We
now turn our attention to the design of the-shared servers.

7. DATABASE SERVERS

The shared database servers in our system perform three major functions: they (1)
accept-data from information sources and add the data to their predicate databases, (2)
transmit database updates to personal systems via a broadcast digital packet radio
system, and (3) implement the remote procedure call interface described in Table 1 to
allow remote access by personal systems. The organization of these functions within a
single server is described below.

The conceptual organization of the data in each server borrows an important idea from
the division of function between personal and server systems which was discussed in
Section 3. The division between personal and server systems views data as being
stored in a collection of databases, rather than in one large database. Similarly, the
information in each server is organized as a collection of databases. These databases
are independent-in the sense that they do-not share essential storage resources. For
example, one database can be deleted from a server without affecting the remaining
databases. The existence of multiple internal databases is not observable at the
interface to the server. Query routing is used inside a server to forward a request to the
proper set of databases, merge results from the databases, and-formulate a-response.
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Implementing a server as a collection of databases allows databases to be viewed as
the basic units of information that are stored on a server. This view is one level
removed from individual records, and as a result provides a number of conceptual and
practical advantages. These advantages include:

" The ability to view predicate databases as the basic unit of configuration,
since a predicate database is described by its contents.

" The natural provision for the reconfiguration of databases from server to
server, because of the predicate data model's use of database content
descriptions. In our application, personal systems are automatically kept
abreast, via updates transmitted over the packet radio system, of the
locations of the system's databases. This capability is possible because
descriptions of the contents of servers are stored in the databases
themselves, and personal systems are programmed to continuously
receive updates to database description records.

" The ability to achieve performance and availability goals by the replication
of databases. The replication of data is most naturally done at the level of
a database. Immutable databases can be easily replicated by copying
them from one server to another. The replication of append-only and
mutable databases is a more complicated issue.

" The ability to implement independent databases on a server in different
ways while still supporting the same interface. The freedom to implement
different databases in different ways is useful when the databases store
different types of data. For example, most of our databases begin their
lives as append only databases, and then become immutable databases
after a certain amount of time. They can then be consolidated to improve
efficiency and reduce storage demands.

These benefits convinced us that the decision to implement a server as a collection of
databases was a good one.

Although we have discussed how data is organized in our database system, we have
not examined how it got theie in the first place. The bulk of our data consists of news
articles, which arrive over dedicated telephone circuits. The information arrives in a
constant stream, with one header per incoming news article. Each input stream is
converted into a stream of database records, and the resulting records are inserted,
based on their types, into appropriate databases. When a database is replicated on
more than one server, the incoming telephone circuit is connected to each server so
that al op of the d -tkasr are kep up% t1 srate.

A second type of input to the servers is a source that is polled for new information. In
our present system electronic bulletin board entries are received in this manner. New
messages are formatted into database records and inserted into appropriate databases.

As new information arrives at the system it is queued to be sent out over the digital
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broadcast channel. Each record is transmitted more than once, with transmissions
separated in time. Each transmitted record is encrypted to protect broadcast
information from unauthorized use. The encryption key used depends on the type of
the record (New York Times, AP, etc). This scheme logically divides the broadcast
transmissions into several independently protected streams. Users are provided keys
for only the streams they are authorized to receive. These keys are placed on the "key
ring" of the personal database system, and enable it to decrypt transmissions.

The remote procedure call interface shown in Table 1 does not have any provision for
the authentication of users that communicate with the system. We plan to have the
personal database system present the keys on its key ring as passwords to enable
access to independent databases.

Implementation of a Database Server
Figure 8-6 shows the block diagram of a typical server as implemented on 4.2 BSD

UNIX. The exact configuration of a server depends on the databases stored bn the
server, the information sources it-is connected to, and the communication channels that
the server offers to personal systems. Only one server is used to drive the digital
broadcast channel. To-ensure continuity of service, a second server can take over the
broadcast channel if the server running the-channel fails.

In order to provide for maximum concurrent activity and failure isolation, each major
function in a server is performed-by a separate process. Processes communicate via
messages which are placed in the file system, in an approximation of recoverable
message queues. If a-process fails, its input messages will collect until-it is restarted.
Processes do not delete their input messages until they have been completely
processed. Thus, if a process fails while it is processing an input message the
message will be processed again. Processes which use input messages to modify non-
volatile state information must operate properly when a failure occurs. Transactions
could be used to structure the failure recovery procedure [4].

In Figure 8-6, information flows from the left side of the figure to the right side.
Information from the stream sources is constantly being read by input daemons that
simply record incoming data items. The input daemons store independent items in
separate files. The input daemons were designed to be simple, in order to reduce the
chance that they would fail and lose information. To date an input daernon has never
failed-to properly record incominginformation.

Each input daemon forwards incoming data items to a- source-specific format
conversion process. Each information source has a different- format, and the source
conversion processes take received data items and convert them into standard format
database records. The resulting records are sent to the broadcast scheduler and to the
database insertion process.
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Figure 8-6 also shows an input process for electronic bulletin board input. This
process periodically polls a set of mailboxes, and when it finds mail, converts it to
standard format database records, which are then sent to the broadcast scheduler and
to the database insertion process.

The broadcast scheduler process receives database records, along with an expiration
time for each record, an indication of how many times the record should be transmitted,
and the key by which the record should be encrypted when it is transmitted. The
information broadcasts are scheduled on the basis of this information. In addition to
running the digital broadcast channel, the scheduler maintains a status display for the
system administrator.

The database insertion process adds, based on record type, new data items to
appropriate databases. In our present system configuration the database insertion
process begins to write new databases every day at midnight. The previous day's
databases are no longer written and are considered immutable. Thus, there is a
separate database for each type of information for each day. Each such database is
kept on line for a period of time which depends on the source of the database. After this
time the database is archived.

The final component of a server is the remote procedure call interface to the personal
systems. When a personal system connects to a server, a process is assigned to
manage the connection and perform requests from the personal system. Figure 8-6
shows one such process. Data from the personal system is first processed by a module
that provides a reliable byte stream. This module is connected to the server's RPC stub
module. The RPC stub module calls the appropriate procedures in the server's query
routing module.

The query routing module determines a strategy, based on the descriptions of the
available server databases, for processing the request. The query routing module then
applies the query to the database(s) and forwards the results to the user's system as
they become available. If a query spans multiple databases of a given type but with
different dates, the query is applied to these databases in reverse chronological order.
The most recent database records in a result set are thus produced first. The personal
system receives the results as they become available. This approach often allows the
system to display a complete screen of results to a user before query processing at the
server is complete.

Our protocol cannot be viewed as traditional remote procedure call protocol because
results are communicated to the personal system as they become available. However
we have retained the idea that procedures are used to defiie a remote interface. This
approach has worked out well in practice. The Abort procedure in Table 1 can be called
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to force a request to abort while the request is in progress. The server will immediately
acknowledge such an abort, cease work on the current request, return "ABORTED" as the
result of the request that was in progress, and wait for a new request. The personal

system calls Abort when it no longer needs the results of the request in progress.

This concludes our discussion of the implementation of the server system. The next

section discusses work that is related to our approach.

8. RELATED WORK

This section compares our system to other systems which share similar goals. These
other systems fall into two broad categories: systems which share our goal of being able
to serve an entire community, and systems which share our goal of distributed query
processing.

Community Information Systems
Teletex [7] and Videotex [1] are two contemporary technologies for community

information systems. Teletex involves the broadcast transmission of limited amounts of
information to specially equipped television sets that can display preformatted pages of
information. In the teletex approach the user selects a page to be displayed, and when

the page is next transmitted it is captured by the receiver in a local buffer and formatted
for display on the screen. Contemporary systems limit their teletex transmissions to a
total of a few hundred pages to keep response times acceptable.

Videotex is essentially time-sharing on a very large scale. Each videotex user has an
inexpensive terminal which communicates with the central system over either telephone
lines or digital two-way cable systems. Since videotex is a two-way system, it can also

be used for home banking, shopping, and other transactional services.

In a sense, our system represents an attempt to combine the best aspects of both
teletex and videotex. By combining personal computation, broadcast communication,
iwo-way communication and centralized mass storage, our design achieves the
following advantages:

* The economies of scale of broadcast communication are combined with the
capability of accessing large databases and transactional services;

* A high-quality user interface is possible because of the processing power
and storage available at each personal database system;

* High performance is possible because the answers to many queries are
available at the user's personal computer;

* The system provides a great deal of flexibility because data can be
integrated with a user's other computational tools;
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" A user can access a wide variety of databases, potentially offered by a
number of vendors;

" Privacy can be safeguarded by ensuring that certain requests are
processed entirely within the user's personal system;

" Users can operate autonomously from any type of central system.

As mentioned above, there are two types of systems that are relevant to our
discussion of previous work. The first type is community information systems, which we
have just discussed. Now let us turn our attention to distributed database systems, and
see how they relate to our discussion.

Distributed Database Systems
Distributed database systems, as the name implies, provide the distribution of data

over a collection of cooperating computers, the resulting system can be viewed by a
user as a cohesive whole. R* [8] is probably the best example of a contemporary
distributed relational database system.

In R*, relations (collections of records) can be vertically distributed, horizontally
distributed, or replicated at multiple sites. R* also provides a naming scheme whereby
information at remote sites can be directly acce3sed by queries. In order to accomplish
data distribution and remote access, the query compilation and query processing
components of R* will automatically route queries to appropriate databases for
processing. Systems similar to R* include distributed Ingress [6] and the SDD-1 system
[5].

Our approach differs from traditional distributed database approaches in one important
reppeqt. In distributed database systems, dependencies can develop between
databases, while in our approach databases are always considered to be strictly
independent.

For many applications, distributed database systems have advantages over our multi-
database approach. The model we proposed for query routing is sufficiently powerful
for immutable and append-only databases. For more comprehensive systems that
include replicated shared mutable data our approach could be combined with query
processing strategies like those used in system R*.

However, the scheme that we have outlined is preferable in many circumstances, and
has advantages including:

* Databases can be freely added to and deleted from the system without
affecting other databases;

* A single simple mechanism allows our system to adjust to changes in the
set of available databases;
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* Queries do not have to explicitly name remote data because query routing
automatically locates pertinent information.

9. PERFORMANCE AND IMPLEMENTATION STATUS

Our community information system began regular operation in April of 1984. At
present 15 users outside of our own research group use a broadcast-only version of the
system. The users have been very helpful in suggesting user interface enhancements
(one user added mouse support himself) and motivating us to catalog the contents of
our databases. In addition, the users let us know immediately if there is a problem with
our database transmissions!

A research version of the system, which incorporates a preliminary form of query
routing and server access, is operational, but its use is presently limited to our own
group. The performance measurements shown below were derived from the research
version of the personal database system. A user acceptance test of the full personal

database system, including query routing and server access, is planned for this
summer.

A problem with the current implementation of our system is that our software cannot
collect database updates from the digital broadcast channel while a user is running
other applications. We believe that this problem will be solved by the next generation of
personal computer operating systems, which will support true multi-tasking.

The performance of the system is excellent for requests that can be locally processed.
On an IBM AT, less than 300 milliseconds is required to either process a query or
display a record from the local database.

To compare the performance of local and remote queries we performed a set of
experiments. Each experiment consisted of making a request that caused the personal
database system to access a server. The observed response times were directly
related to the 1.2 KBit/second channel that was used for communication between the
personal database system and the server. The results of our experiments are shown
below:
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Query entry to display 2.7 sec.
of first result

Query entry to display 11.6 sec.
of complete summary
page

Request to display 4.1 sec.
first page of article
until first line
arrives

Request to display 11.9 sec.
first page of article
until first page
complete

Our system includes quite substantial databases. Every day we receive approximately
150 articles from the New York Times totalling 600 KBytes, 2500 articles from the
Associated Press totalling 6 MBytes, and 70 KBytes of electronic mailing lists.

10. CONCLUSIONS

We have been pleased with the initial user acceptance of our system. Users have
been able to grasp the idea of a local database that is defined by logical predicates, and
we observe that users modify the definition of their local database to match their
interests. Our experience has shown that broadcast technology is an effective way to
update local databases. The natural advantage of the broadcast portion of our system
is that it can scale to any size user population.

Database content descriptions and query routing make the personal databases
provided by our system part of a comprehensive information service. Experience with
our system has shown that users often want to access information which is not available
on their personal system. Our system will automatically route such queries for non-local
information to an appropriate server database.

In retrospect, we believe that our decision to structure our system as a collection of
1 . J AK.t1 .JU i l I, .I IU I CL A>UILt U III ,.UUI i a Vt-l l aesui I'hrtLUai

framework and a number of practical benefits. Personal database systems will be an
even more powerful component of large-scale information systems as local storage and
processing continue to decline in cost. Optical storage may even allow a user to buy
large databases over the counter for use on his or her personal system. Thus, the
ideas that we have described for local processing and transparent remote access will be
of increasing importance in future systems.
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Figure 8-1: System Overview
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5 matching articles found. lines 1:18 of 18

b[ 1 sep 19, 10:48 (121 lines) regular (Financial)]
NEW YORK -- After a record year, the market for public stock
offerings by private companies has gone into a slump, forcing
many of these companies to bypass the new-issue market and
seek capital -- often through creative deals -- elsewhere.

2 sep 18, 22:37 (80 lines) regular (Financial)
NEW YORK -- Technology stocks took a beating Tuesday, for
two unrelated reasons, and helped to keep the market on the
downside.

3 sep 18, 21:18 (82 lines) urgent (Financial)
A digest of business and financial news for Wednesday, Sept.
19. 1984:

4 sep 18, 18:22 (70 lines) urgent (Financiai)
NEW YORK -- Stock prices dropped Tuesday in accelerated
trading, with some of the technology and large
capitalization issues registering the biggest declines.

5 sep 18, 7:41 (113 lines) deferred (Financial)
London - The American lawyer would have been rubbing his
hands, except that he was jogging in Hyde Park, so he was
swinging his arms.

technology & (category financial);

Figure 8-2: Summaries
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Article N409187.727: lines 1:23 of 80

type: New York Times general news copy
priority: regular
date: 09-18-84 2237edt
category: Financial
subject: MARKETPLACE
title: (BizDay)
author: DANIEL F. CUFF
source: (c)1984 N.Y. Times News Service
text:

NEW YORK - Technology stocks took a beating Tuesday, for
two unrelated reasons, and helped to keep the market on the
downside.

First, worry over problems with a disk drive hurt Control
Data and Burroughs. Second, the semiconductor issues were
battered by a bearish brokerage house report on Motorola.

Burroughs opened down 2 3/8 Tuesday iaurning after an order
imbalance. The drop in Burroughs, which closed the day at 53,
off 3 5/8, followed Control Data's slide. On Monday, Control
Data dropped 2 1/8, and it lost an additional 3/8 Tuesday, to
close at 26 1/8.

Control Data, according to analysts, encountered problems with
a thin coating on the disk. ''If that chemical compound is not
virtually perfect, trouble ensues,'' said Ulric Weil, an analyst
at Morgan Stanley & Co. ''We are talking about tolerances the
thickness of a human hair.''

technology & (category financial);2

Figure 8-3: Selected Article
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Status: TYPE = {completed, aborted, error);

Abort: PROC[]
RETURNS [s: Status];

EstablishQuery: PROC[query: String]
RETURNS [s: Status];

Summaries[start, finish: INT, results: PROC[s: Summary]]
RETURNS [s: Status];

FetchRecord[record, from-line, toline: INT, results: PROC[r: Rcrd
RETURNS [s: Status];

Matches :PROC[]
RETURNS [final: BOOL, count: INT, s: Status];

Connect: PROC[name: String]
RETURNS [s: Status];

Disconnect: PROC[]
RETURNS [s: Status];

Table 1. RPC Interface
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1. INTRODUCTION

The 1985-6 academic year has been marked by major transitions within the RTS
Group, evidenced by revision of research emphasis as well as personnel changes. The
relocation of R. Halstead and his students in the Spring of 1986 constitutes the spinoff
of the Parallel Programming Group (including MultiLisp and Concert) as an independent
group. While related RTS activities will certainly continue to interact with and be
influenced by the work o' Halstead's group, they wili presumably be separately reported
in the future. We view tr.,s development as an inevitable consequence of the maturity
and stature which has been achieved by Halstead and his group. In addition, the
imminent departure of C. Terman concludes RTS research dealing with tools for VLSI
simulation. This work (whose extension to multiprocessor techniques is reported in
subsequent sections) has produced a stream of widely exported results and tools during
the past several years. Related work by R. Zippel, reported here, continues as a major
effort in the design tools area. The L architecture, introduced in last year's progress
report, has developed into a major research thrust.

2. PARALLEL PROCESSING

The past year saw continued progress in the construction of the Concert
multiprocessor, now nearly complete and working fairly reliably. The software
environment for Concert continued to mature as well, with the improvement of
networking and diagnostic tools. The MultiLisp parallel programming language was
used for several application studies, and the MultiLisp implementation also underwent
some further development. A major new facility gained by the group was a collection of
five Symbolics 3600 Lisp Machines, on which a very fast MultiLisp emulator has been
constructed. Outside organizations have collaborated in several aspects of this work.

2.1. The Concert Multiprocessor Testbed

During the past year, Concert [5] has matured into a usable, fairly reliable testbed that
is very useful as a research tool. The current Concert configuration has 24 processors

organized into six clusters. Each cluster has a RingBus Interface Board, or RIB, that
connects it to other clusters and globally shared memory. Eight RIBs are needed to
build a full 32-processor Concert All eight have been built; only some additional
backplane wiring, minor repairs to one RIB, and engineering updates to some memory
boards stand in the way of building the full 32-pro,.essor Concert machine.

When running diagnostic programs, Concert operates with a mean time between
errors of approximately two days. Unfortunately, some application programs, such as
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MultiLisp [4], operate somewhat less reliably. When running on 24 processors,
MultiLisp seems to exhibit a mean time to failure of about three hours. It is not yet clear
whether this is due to hardware or software causes. In spite of this error rate and the
fact that Concert only has 24 processors at this time instead of the full 32, Concert has

already been used to do several significant pieces of experimental work in parallel
processing. Successful projects include several application studies using MultiLisp,

discussed below, and the development of the parallel logic circuit simulator PRSIM [1],

discussed elsewhere in this report.

The Concert software environment has seen further development and improvement.

Notably, a network server has been developed. It allows programs running on Concert
to access files located on other Chaosnet hosts. It also permits much faster
downloading of programs to Concert than was previously possible. Other software,
especially the Concert "monitor" located in EPROM on each processor board, has been
modified to fully support multi-cluster operation in a reliable and aesthetic way. The

experiences of the past year have also underscored the importance of comprehensive

and easily run diagnostic programs in keeping the Concert hardware operational.

Consequently, significant development of diagnostics has also occurred.

2.2. Parallel Lisp

The design, implementation, and evaluation of parallel programming languages based

on Lisp continues to be a major focus of research interest in the group. During the past
year, members of the group have been involved in further development of environments
for executing MultiLisp programs, design and implementation of Butterfly Common Lisp,

and development and evaluation of several application programs written in Multil-isp.

The existing implementation of MultiLisp for Concert changed only in relatively minor

ways. Several modifications were required to adapt MultiLisp for operation on multi-
cluster Concert hardware. Several improvements were also made to MultiLisp.
MuliiLisp was modified to be able to use the network server to read and write remote
files, leading to a major improvement in the convenience of performing MultiLisp
experiments on Concert. Additionally, a mechanism for turning processors "off" and
"on" was added to MultiLisp, greatly facilitating automated experiments in running a
given program using different numbers of processors. Examples of statistics gathered

using this tool are given in Figure 9-1, which reports on the performance of two parallel
sorting algorithms coded in MultiLisp.

A more fundamental modification involved the addition to MultiLisp f a parcel-based

parallel garbage collector, as described in [4]. This new garbage collector significantly
reduces garbage collector overhead and significantly increases the size of MultiLisp
computations that can be performed without free storage overflow.
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As mentioned above, the reliability of MultiLisp running on Concert continues not to be
as good as that of diagnostic programs running on Concert. It has been conjectured
.hat this may be caused by the fact that 32-bit read or write operations occur in two 16-
bit pieces and are not guaranteed to be atomic. Several changes in MultiLisp's way of
compensating for this have been tested, but results have been inconclusive.

A major improvement in the group's computing environment came with the acquisition,
beginning in August 1985, of five Symbolics 3600-class Lisp Machines. Two of the
machines were purchased out of Laboratory for Computer Science equipment funding.
The remaining three belong to Symbolics but have been located in 545 Technology
Square for our use. Building on the efforts of D. Plummer at Symbolics, we have
developed a MultiLisp emulator that runs on a Symbolics Lisp Machine. The emulator
runs a subset including all the commonly used primitives of MultiLisp. The emulator
also collects some data regarding the potential parallelism of emulated programs.
Unfortunately, this data is subject to disruption by paging and garbage collection
activity, and often it is not very reproducible. However, what the emulator loses in
comprehensiveness and reproducibility of timin. information, it more than makes up for
in speed -- 20 to 200 times faster than a single Concert processor executing MultiLisp.
This speed, as well as the extensive set of Lisp development tools hosted on the Lisp
Machine, makes the Lisp Machine the environment of choice for initial MultiLisp
program development and check-out, after which a program can be moved to Concert
for more accurate characterization of its parallelism.

Several members of the group have been collaborating with personnel at Bolt,
Beranek, and Newman in developing Butterfly Common Lisp (also known as
MultiScheme), a parallel Lisp for the Butterfly parallel processor [2]. Butterfly Lisp is
based on the same future construct and paradigm of programmer-specified parallelism
as MultiLisp, but was developed by evolution from an MIT Scheme system and
therefore differs considerably at lower levels of the implementation. Butterfly Lisp is
operational at BBN, and can run most of the same parallel programs as MultiLisp. A
sequential emulation of Butterfly Lisp runs on several Hewlett-Packard workstations at
MIT.

Several studies of application programs in MultiLisp have been completed, including a
simulator for clocked sequential logic circuits (Bradley), a speech analysis program to
generate word hypotheses from noisy phoneme hypotheses (Lau), a set of routines for
information retrieval from semantic nets (Baek), a hidden surface elimination program
for display of graphic images (Jenez), and a parallel parser for Lisp S-expressions
(Halstead). Results varied according to the particular algorithms and data sets used,
but all application areas proved able to support at least several-fold speedups for
problems of realistic size. These experiments also provided some examples where ii
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would be desirable to support speculative parallelism [6] in MultiLisp, as well as
indicating some uses for a nondeterministic "choice" construct that would return
whichever of a set of values is computed first, without waiting for the others. An
additional benefit of these experiments is to add several more items to our library of
example MultiLisp programs, which now numbers about a dozen. This library will help
us calibrate the parameters of future architectures designed for executing MultiLisp.

Other work has focused on methods for automatically generating parallel MultiLisp
programs without explicit specification of that parallelism by the programmer. A set of
translation rules were developed for converting Lisp programs without side effects into
MultiLisp programs using the future construct only in those places where it had some
chance of generating more parallelism than overhead (Gray). The translation rules are
based on a strictness analysis of the program being translated, and successfully avoid
putting future in a large fraction (typically about 90%) of the places where it would be
put by a naive future placement algorithm. In fact, these rules place future in all the
places where an experienced programmer would put it, and in relatively few additional
places -- perhaps 30% more, though this is highly program-dependent. Thus the
translation captures almost all of the available parallelism without introducing too much
avoidable overhead. These translation rules were subsequently extended to cover
programs with certain restricted kinds of local side effects (Wang).

A rather different approach to parallel execution of Lisp programs was also
investigated (Katz). In this approach, ordinary sequential Lisp programs are written with
no explicit programmer-specified parallelism. A run-time system undertakes to exploit
parallelism in the algorithm by optimistically running various parts of the program in
parallel with each other and monitoring their interactions. If a conflict occurs (e.g., one
task reads a value before it is written by another task that belongs at an earlier point in
the original program's execution ordering), then one of the conflicting tasks is aborted
and restarted. If no conflict occurs, then parallel execution has succeeded without
changing the semantics of the original sequential program. Writes (side effects) are
much more expensive than reads in this scheme since data can only be written
provisionally by a task until its "turn" in the sequential task ordering occurs. Data written
by a task cannot be permanently installed in memory as long as there is any possibility
that the task will be aborted. When a write is finally installed in memory, it will cause
aborts of any tasks that belong later in the sequential ordering but have already read the
location being written. This proposal imposes significant bookkeeping overheads, since
all reads and writes must be logged. The best way to reduce these overheads to
moderate proportions is not yet clear, but the approach is interesting because it
promises to allow execution of apparently sequential programs (which therefore have
none of the software engineering difficulties often associated with explicitly parallel
programs) with significant degrees of parallelism.
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2.3. Collaboration with Other Organizations

The third full year of our collaboration with Harris Corporation has just been
completed. Harris continues to build a multiprocessor testbed similar to Concert but
using the GCM, a crossbar-based replacement for the RingBus, as its central
communications mechanism. Debugging of the GCM is continuing. When the GCM-
based Concert is operational, however, it will be largely compatible with the RingBus-
based Concert, and is expected to run essentially the same software. Through the
generous year-long loan of an employee (Thaker) to MIT, Harris has considerably
accelerated the pace of software development for Concert, to the long-term benefit of
both MIT and Harris. Other assistance from Harris has included the construction of
hardware for monitoring levels of activity on the MultiBuses in Concert. Parts of this
hardware have already been shipped to MIT and await installation in Concert. In return
for this assistance, MIT personnel have periodically traveled to Harris and have
generally assisted in developing an environment for parallel processing research at
Harris. This environment is supporting the development of the PCF and Simultaneous
Pascal systems for parallel programming, which are being investigated at Harris using
Concert as their multiprocessor testbed.

A more substantial cooperative effort between the group-and Harris Corporation barely
got off the ground before becoming a victim of Gramm-Rudman budget cuts. A joint
proposal was made by Harris and MIT to the DARPA Strategic Computing Program to
build a second-generation multiprocessor called SCAMP. The proposal was approved
and Harris was authorized to begin spending money on it. However, after several
months the project was killed during a period of belt-tightening at DARPA. Currently,
DARPA personnel are considering a replacement proposal from Harris and MIT that
differs ih-various details but has similar overall-goals.

As discussed above, members of the group-have also been involved-with personnel at
Bolt, Beranek, and Newman in the-design and-development of Butterfly Common Lisp.

Copies of the Concert MultiLisp implementation have also been sent to the FAIM
group at Schlumberger Palo Alto Research Center and to several universities.

3. THE L ARCHITECTURE

Last year's progress-report introduced an-effort by C. Terman and-S. Ward, initsfetal
stages, directed toward the development of a new non-von Neumann computer
architecture. Briefly, L is a new computing model based on object-oriented storage and
multiple-parallel threads of control. Relying on these two constraints, L is designed to
lead to efficient multiprocessor architectures that implement the advanced control and
data structures popular in contemporary software. We hope that L will lead to a broad
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new class of language-machine systems based on this new model of computation. L is
not tied to a particular programming methodology or user-level language; however, it is
specialized to programming paradigms which exploit (1) object orientation, and (2)
multiple threads of control. We view L as an architectural link between multiprocessor
implementations and many existing languages such as MultiLisp, Common Lisp, Ada,
Prolog, Modula, and other languages yet to be invented. A technical aspiration of L is
that it become a minimal model for high-level modern languages, in the same sdinse
that RISC architectures are minimal for traditional programming languages.

3.1. Architectural Model

Unique characteristics of L include (1) its reliance on heap-allocated, fixed-size data
structures called CHUNKS for ALL program and data storage; and (2) its explicit and
fundamental support for computation states -- full continuations -- as first-class data
objects. Within these constraints, however, L deliberately hedges on a variety of
controversial issues. An example of such an issue is the extent to which run-time types
are dictated by the lowest level architecture, an ongoing debate that we view as
centering on interpretation versus compilation. The tagged-architecture extreme prefers
run-time mechanism (demanding hardware support for efficient execution) to support
types at the machine level, while (for example) the opposite extreme relies on compile-
time handling of types to simplify and streamline the run-time environment. Our
minimalist bias favors the latter position.

Along with contemporary compilation-intensive language advocates, however, we are
unwilling to compromise the semantic advantages of run-time typing. Consequently,
our data representation conventions, while almost completely dictated by compiler
convention, provide data structures which are strictly self-identifying at run time.
Although the L run-time conventions provide for arbitrary discriminated unions, we
anticipate most type information to be compile-time constant, incurring space but not
time overhead during program execution. To this end, L chunks have mandatory types
which are themselves first-class L objects; typically the L type of a data structure
incorporates a description of the representation conventions associated with that data
structure, including sufficient information to compile accesses to the structure's
components. While this type information renders the structure completely scrutible at
run-time (providing, incidentally, an effective debugging environment) our expectation is
that it will be rarely referenced by routine object code. The verification of this
expectation (and a variety of similar ones) is, of course, among the goals of the project.

The abstract computational model engendered by L consists of a dynamic, evolving
network of inter-referencing chunks, some of which are identified as representing
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computation states. Each STATE chunk identifies a small set of prerequisites,
referenced chunks whose access (exclusive or nonexclusive) is required for execution
of a next instruction. At each step of the computation, some set of runnable STATE

chunks with non-conflicting prerequisites is selected to be advanced to successor
states. The STATE chunks so selected can then be advanced to their successor states
in any order, or simultaneously, since the respective computation steps are non-
interacting. The advancement of any state may lead to multiple successor states --
effectively a fork operation -- to be spliced into the network in the vicinity of the parent.
The capacity of this approach for unbounded numbers of threads of control, together
with the explicit coding of criteria for each to progress, reflects our aspiration to highly
parallel L implementations.

Figure 9-1: L Computation Model

Nondeterminism enters the model in that the criteria for selection of computation
states to be advanced during a given step are deliberately underspecified. In a practical
multiprocessor L system, that selection would be constrained by limited resources (e.g.,
processors) as well as by technology-dependent communication costs.

The specification of prerequisites by STATE chunks underlies the basic flow of control
in the L model. A computation hangs until its specified prerequisites are satisfied; in a
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typical implementation, this will happen only when the STATE chunk and its prerequisites
are localized (e.g., in an execution unit). In a large system, prerequisite satisfaction
may incur arbitrarily large delays which reflect the natural cost of nonlocal
communications. Conversely, the L model allows such delays to be introduced
artificially: a chunk ID may be introduced into a computation while the chunk it
references is locked and consequently unavailable to satisfy prerequisites. Such an ID
is, in effect, a future in the sense of R. Halstead's MultiLisp and provides simple access
to lazy evaluation and similar programming structures.

3.2. Prototypical L Implementation

A very preliminary emulation of a single processor L engine became operational
during the Spring of 1986. This implementation, written entirely in Lisp, was designed to
explore fundamental architectural parameters rather than to meet even modest
performance goals; it executes toy L programs at an excruciating 100 instructions per
second. However, it stimulated the preliminary designs of a simulation engine [3], run-
time object representations, and an assembler-level language processor. Most
importantly, the first concrete instantiation of an L instruction set has established a

starting point for L's evolution. Finally, this early effort set the stage for an
unprecedented four to five orders of magnitude of performance improvement anticipated
during the next year.

We expect to implement L entirely in microcode for the Texas Instruments Lisp
Machines as our second prototype. Preliminary steps toward this goal have already
been taken by the microcoded implementation of L's chunk-based storage primitives.

4. ARCHITECTURAL BUILDING BLOCKS

A number of group activities have explored architectural approaches of general
interest. One such study involves a novel memory architecture in which static-column
dynamic RAMs achieve the performance characteristics approaching that of a virtual

cache without the expense of fast static memory. The technique is an extension of one
proposed by Goodman, in which static-column RAMs are used to emulate a physical
memory cache; unlike Goodman's scheme, however, our approach avoids the pagemap
delay on cache hits. To demonstrate and evaluate this approach, Zak has designed
and implemented a cacheless 68020 NuBus processor board capable of running a
20MHz processor out of local virtual memory without extra wait states (i.e., achieving
3-clock reads).

Various other cache-related studies have been conducted during the past year, and a

number of interesting tools have been built. D. Douglas implemented a general-
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purpose cache simulation tool in microcode on the Texas Instruments Lisp Machines.
This tool allows a proposed cache configuration to be specified (using Lisp), then
collects statistics as ordinary unmodified Lisp code is run (at a modest performance
penalty). This tool was used to evaluate the static-column cache approach mentioned
above in a Lisp-machine context, with quite encouraging results. Maimone developed,
in TI microcode, a prototype of the metacaching mechanism proposed for use in the L
architecture. His results suggest that the value of metacaching as an add-on to existing
Lisp Machine architectures is limited, although we continue to speculate that it can yield
dramatic results in architectures designed to exploit it.

NuBus-related engineering continues as a minor focus of the Group's activities.
D. Douglas has completed a study of techniques for basing wider-word architectures on
the 32-bit NuBus, using such approaches as a reblocking cache having differing word-
sizes at its processor and- bus ports. J. Wolfe has designed and implemented a bus
window useful for interfacing PC/AT compatible peripherals and processors to NuBus-
based machines. Along with G. Papadopoulos of the Laboratory's MEF project,
S. Ward has continued to participate in the NuBus standardization effort. Progress in
that-arena, although painfully slow, is apparent the NuBus is now designated P1196 by
the-EEE, and is rumored-to be the basis of Apple's forthcoming "open MAC."

5. SIMULATION TOOLS FOR VLSI

The burgeoning interest in integrated circuit design has lead to an increased demand
for timely, accurate circuit simulation. Due to capacity limitations of existing simulation
programs, this demand is increasingly difficult to satisfy, especially as circuit sizes now
routinely exceed the 100,000 transistor mark. Algorithmic improvements -- e.g.,
relaxation-based circuit analysis and switch-level transistor models -- have helped to
close the gap, but even these simulators fall short of providing the simulation capacity
required for today's large designs.

Fortunately, logic-level simulation of a large circuit actually entails the simulation of a
large number of small subcircuits. With proper bookkeeping, many of the small
simulations can be performed simultaneously, an observation which leads one quite
naturally to the development of multiprocessor simulation algorithms. The simplicity of
logic-level simulation is well- matched to the computational abilities of microcomputer-
basecd multiprocessors (which have adequate integer performance, but relatively poor
floating-point abilities). On the other hand, since the simulation computations require
only a few dozen instructions for each subcircuit, one must be careful that the added
overhead of multiprocessor operation -- e.g., extra bookkeeping, delays due to memory
contention and interprocessor communication -- does not obviate the performance
increase resulting from parallel execution.
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These considerations have led us (C. Terman and -J. Arnold),to develop PRSIM, an
algorithm based on coarse-grained -parallelism, where -each processor proceeds
relatively independently, communicating with its neighbors only to transmit information
about shared nodes. Eliminating the use of frequent, low-latency communications has
the added advantage that the algorithm should perform well on a variety of different
interconnect architectures; shared memory is not a requirement. As will be discussed
below, reducing the amount of interprocessor communication results in some loss of
efficiency since computations based on out-of-date information may need to be redone.

A few definitions will be useful below in describing how a circuit is partitioned for
simulation on a multiprocessor. If one (temporarily) ignores connections made to the
gates-of transistors and to VDDor'GND, a circuit is naturally-partitioned into subcircuits
called groups. Note that the value of'a node is determined by a single .group. Nodes
which connect*to the gates ofttransistors in a group are called'inputs, and-nodes in the
group which control transistors -in other groups are -called outputs. For a group g, let
ou(g)) -be the set of groups -which 'have as an input one of g's outputs. In our
simulation, each group is treated as a-unit'by PRSIM:if -any input to the group changes
value,-new values for all nodes within:the group willbe computed.

For simulation on an n rprocessor system, the circuit -to -be simulated is divided into n
partitions, each composed of one'ormore groups. iEach processor is -then assignedthe
task of -simulating one partition of 1he circuit. -Ideally-each partition could be simulated
independently, keeping each of our $n$-processors busy doing useful calculations. We
may fall short of this ideal for the-following reasons:

1)-some partitions may take -less -time 1o simulate than -others; the resulting
imbalance in computation load'may leadto sometprocessorslyinglidle.

2) a precedence constraint between 'two -partitions can occur when one
partition determines the value of a node that -is an input to the other
partition. The computations of 'the dependent partition must always lag
-behind the original partition to ensure that-the correct-input valueis used.

These-problems are addressedbelow.

5.1. Circuit Partitioning

Processor utilization and communication costs are influenced by the manner in which
the network is partitioned. To maximize processor utilization, the-simulation load must
be evenly distributed among the processors, which -implies partitioning the circuit into
pieces of roughly equal size and complexity. To minimize communications costs, one
should-minimize the number-of-links which span partitions.

For the-work described here, we used a "greedy" algorithm for-the initial assignment of
groups -to partitions, followed by a simple iterative-improver which moves "edge"' groups
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from one partition to another. Other, more exotic, partitioning strategies are under
investigation (by Davon and Frazier), but so far the improvements in simulator
performance have not paid back the extra computational overhead such strat.,es
entail. This seems especially true for large circuits where the sheer number of groups
rules out visiting most groups more than once.

The greedy algorithm operates by assigning the most computationally expensive
unassigned group g to the partition with the smallest computation load to date. Next,
the members of out()are assigned to the same partition, then members of out(out(g)),
and so on, until we exhaust this particular tree of outputs, or until the computational load
for the partition exceeds the total computational load divided by the number of
partitions. The whole process is repeated until all groups have been assigned to a
partition.

Static partitioning algorithms, which are based on circuit topology alone, are unable to
cope with the dynamic components of processor utilization and communication.
Consider, for example, a simple 16-bit counter which is to be split into 4 partitions. Our
algorithm would split the circuit into four 4-bit slices, balancing the apparent simulation
load. The dynamic behavior, however, will be quite poor since the simulation load and
communication decrease exponentially from -the low order partition to the high order
partition. A more effective partitioning would have placed bit 0 of the counter in the first
partition, bits 1 and 2 in the second, and so on. Davon has modified our static algorithm
to use profiling information accumulated during earlier simulation runs; early results on a
limited number of test circuits indicate a small improvement over partitions created by
the greedy algorithm.

5.2. Decoupling the Simulations

Enforcing the precedence constraint represented by a node shared between two (or
more) partitions requires additional communication and can introduce delays in a poorly
balanced simulation. Feedback between two partitions creates a circular precedence
constraint, which can result in a forced synchronization of the simulation processes:
each partition in the feedback path cannot proceed with the simulation of time step t+1
until all partitions have completed step t. However, if the value of each input-was known
for all time, there would be no precedence constraints to enforce and each partition
could be simulated independently of the others. This observation suggests decoupling
the partitions by introducing a history buffer for each partition that encodes the value of
each input for all time. Simulation of a partition is then allowed to proceed based upon
the assumption-that the current contents of its history buffer are correct.

When a partition changes the value of an output node, it sends a message to the other
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partitions for which that node is an input. The receiving partitions use this information to
update their history buffers and redo their simulations if necessary. In order to correct a
simulation to account for a change in the input history, we employ a checkpointing and
roll back strategy derived from the state restoration approach to fault tolerance in
distributed systems. As the simulation progresses, a processor saves, or checkpoints,
all, of the changes to the simulation state: inputs, outputs, and internal events. The set
of checkpointed state changes forms a complete history of the simulation. The
simulation of a partition can be rolled back to any previous state by walking back
through the history, undoing all of the state changes.

To avoid infinite regress in feedback loops, it is sufficient to ensure that at least one
partition in any feedback loop will make forward progress after each rollback. PRSIM
accomplishes this by guaranteeing the propagation delay through every partition is
positive, i.e., no input change at time t can produce an output change earlier than t+1.
Thus, no partition can cause -itself to roll back to the current simulated time by
transmitting an output change to another partition. This ensures that each partition in a
feedback loop will make forward progress on each rollback.

When the simulation of a partition must be rolled back, the state of the simulation is
restored from the checkpointed information. In an earlier implementation of PRSIM, we
employed a full checkpointing strategy, where the entire state of tile simulation was
saved periodically. To roll back, the entire simulation state was restored from the latest
checkpoint prior to the input change which forced the rollback. We felt that the state of
the network could be saved quite compactly (3 bits per node), and the cost of restoring
the state from one checkpoint would be substantially lower than restoring from a set of
incremental checkpoints. To keep both the time and storage costs of checkpointing
small, the frequency of checkpoints was decreased as a function of time since the last
rollback or resynchronization.

The redundant work which resulted from rolling back farther than necessary proved to
be prohibitive when the number of processors exceeded about six. To solve this
problem, PRSIM was rewritten to employ an incremental checkpointing strategy, in
which every change to the simulation state was saved as it occurred. To roll back, each
state change is undone in reverse order back to the time of the input change which
forced the rollback. The state information which must be saved consists of the set of
changes to node values, both internally generated events and externally generated
input changes. The event list concept is extended-to record past as well-as future node
changes by saving events after they are processed. The set of input changes to a
partition is recorded in the input history buffer, described earlier. Each partition also
contains an output history buffer, which records changes to nodes which are inputs to
bther partitions. Messages are then transmitted to successor partitions whenever
changes are made to the output-history buffer.
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5.3. PRSIM Performance

PRSIM is a parallel circuit simulator which employs the history and roll back
mechanisms presented above. As the name implies, PRSIM is based upon the RSIM
algorithm. The initial implementation was designed for the Concert multiprocessor,
developed at MIT. Although the Concert system is a tightly coupled parallel processor,
the PRSIM algorithm does not require a shared memory architecture.

The performance of PRSIM is most easily expressed in terms of the effective
speedup; for N processors this is defined to be t(N)/t' (1) where t(N) is the time taken to
run a given experiment on N processors. The following table shows measurements
taken while simulating a 64-bit adder circuit containing 2688 transistors and 1540
nodes:

IN I121314161

Speedup 1.00 1.86 2.43 3.11 3.77 1

There are three factors which prevent the effective speedup from increasing linearly
with the number of processors: the extra simulation incurred as a result of roll back, the
processor utilization or load balance, and the overhead associated with parallel
processing. The extra simulation incurred can be expressed in terms of the simulation
efficiency, which is defined to be ns = events(1)/ events(Nvhere eventsf/)s the number
of events processed in an N partition experiment. With up to six processors, we
observed simulation efficiencies of 93%, indicating little loss due to redundant
simulation.

A measure of how successfully the simulation load is balanced among the processors
is the processor utilization, which is defined to-be the percent of time each-processor is
-busy. In the six processor experiment, the average utilization-was only 71%. The low
utilization accounts for most of-the loss of performance in the example above; this effect
may be due in part to the small size of the test circuit.

The overhead associated with parallel execution can be broken into the costs
associated with-the history mechanism and the costs of interprocessor communication.
In the six processor experiment, 8.5% of the active time was spent sending and
receiving messages, while only 3% was spent in the checkpoint and roll back
mechanisms.
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More extensive experiments have been performed utilizing up to 22 processors and a
variety of test circuits. The results will be presented in a forthcoming paper.

6. SCHEMA DEVELOPMENTS

Schema is an integrated design system for electronic designs being developed with
the help of G. Clark and M. MacDonald at Harris Corporation. There are two key
problems in designing VLSI systems that Schema addresses. First, the designs
themselves are quite complex and the designers need help managing the complexity of
the design. Second, the design tools themselves are becoming more and more
complex.

Schema addresses the design complexity issue in three ways. First, Schema
provides a complete design structure in which the design can store schematics, layouts,
simulation results and all other artifacts of the design. Thus it captures the complete
design. In order to understand the impact of different design decisions, the designer
needs to examine the design from different perspectives. Schema allows the designer
to walk around the design laterally (through the schematics, layouts and simulation
results) or vertically (from block diagram through logic and circuit schematics).
Furthermore, Schema maintains consistency between the different viewpoints of the
design, if possible, and marks the different components incompatible if not.

The second approach Schema uses to simplify large designs is to encourage the
development of a library of simple tools. Simple tools perform a-simple task -to help the
designer. Some examples are a delay estimator that calculates the delay between two
nodes in a circuit or a power estimator that computes the average power dissipated by a
set of devices. This information can be easily derived from a-simulator or calculated by
hand, but in either case requires enough effort-on the designer's part that it-will not be
done often. The purpose of these simple tools is-to make this information available to
the-designer whenever it is needed so that design decisions can be made in a confident
fashion. A logic synthesizer might be anotherexample of a simple tool. This-tool would
merely convert a boolean equation into a pull-down or pull-up-structure. Again an easy
operation for a designer but somewhat time-consuming. None of these tools is a major
CAD-advance in and of themselves but it is our belief that cumulatively they will be.

Finally, the big tools, simulators, routers and compactors almost always have several
variants. Simulations can be i,,,e using a switch level simulator, a logic simulator or a
transient simulator. Routing can he done using any of a number of river routers or
switch-box routers. Each of these techniques is-appropriate for a different segment of a
design. They should be designed to be interchangeable, so that the designer can
choose which one to use at different points in-the design. The best example of-this type
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of CAD tool currently in use is a mixed mode simulator, though the decision process is
controlled by the program not the designer.

To support these types of tools, the components of Schema must be more thoroughly
integrated than is true of most other CAD environments. This is accomplished by the
entire designing, and most design tools coexist in a common address/namespace. To
encourage interchangeability in the software tools and to minimize the effort required to
build CAD tools, a "Layered Language" software organization is used. Finally, a fairly
complete and uniform toolbox of user interface tools is provided. Thus it is relatively
rare that a tool designer need be concerned with developing a user interface to his or
her tools.

In the past year we have made significant progress in Schema's development. Its
schematic entry system has been vastly improved, a viable layout system is in place
and the simulation tools are much improved. Each of these is described below., In
addition, L. Glasser is beginning to use Schema to develop a CAD tool, the first
example of a non-Schema developer building a tool with Schema. Finally, our "Layered
Language" software philosophy has been more clearly articulated in internal memos
and-talks. For reference, the current version of Schema consists of about 1.75 million
bytes of source code.

6.1. Schematic Entry System

One of the key tools in Schema is the schematic entry system. Schematics are the
most common mechanism used for describing circuits, indicating how simulation should
be performed and responding to user's queries. Much of the designer's time is spent
dealing with them. Schema attempts to make the construction of schematics as
painless as possible, enough so that the designer would prefer to sketch a- schematic
with Schema rather than on the back of paper napkins. This year the system has
improved considerably both in performance and functionality. The functional additions
allow the system to deal with busses and keep track of, and label, individual and
bundled signals. An icon editor has been added which allows the designer to design
icons for modules which may then be used in a schematic.

At Harris, there has been interest in using Schema to develop wire wrap and printed
circuit boards. This has motivated us to develop a database of (TTL) packages that is
tied to the logical functions specified via the schematic. In addition to the usual
information (pin count, logical function), we chose to include speed, power, set up and
hold times, and all other information that is contained in the parts data sheets. To
implement our database we have chosen to use the Kandor knowledge representation
language (developed by Schlumberger Palo Alto Research Center). This provides a
great deal of flexibility-to the designer in making queries of the package database.
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6.2. Software Organization

The most common approach used in building a software system.is to use a structured
design methodology. Using this methodology, a specification for the problem to be
solved is given. Using this specification, the solution of the problem is decomposed-Into
sub-problems. This leads to a tree-like decomposition of the problem into sub-
problems. To encourage modularity, each of the sub-problems is solved independently.
this approach is then applied recursively to each of the sub-problems. This approach
leads to a modular resolution of the problem and provides, accountability for faults, an
important issue in developing large software systems.

We feel that this approach is weak for a number of reasons. First and most important,
invariably the problem posed is almost certainly not the problem to be solved. Either
the problem's specification is incomplete or inaccurate, or by the time the system is-built
the needs will have changed and a slightly different system is required. Second, the
modularity imposed by structured design leads to duplication of effort as each team
builds the tools necessary to solve its problem. If they choose to share modules with
groups working on other subproblems, then a hidden dependency will appear among
the modules sharing code, reducing their modularity. Finally, the accountability benefits
of structured design are really illusory. Hard problems in the resulting system are-more
often- due to poor decomposition of the problem; thus the responsibility for the problems
is collective.

In Schema, we have chosen to use what we call a "layered language" approach to
building-systems. To solve a problem using this approach, one generalizes the problem
to be-solved into a class of related problems and then develops-a "language" for solving
problems in this class. This new language has two components: (1) new data types
and operations on the data types, and (2) new control structures (abstractions).
Collectively these tools should make the solution of problems from the original class
easy. The resulting system-consists of many language layers, each allowing narrower,
semantically richer mechanisms for describing the solution to a problem.

For instance, instead of building a single schematic entry system in Schema, we have
chosen to build a language that makes it easy to construct graphics editing systems.
This language includes spatial management data structures, icons and connectivity
structures. New control structures exist for tracking the mouse, moving objects -and
synchronizing screen updates. This language is then used not only to build the
schematic entry system, but also is the basis for the layout and waveform entry
systems.

The new data structures are often built using the Lisp Machine's "flavor system" and
the new operations using "flavor methods." The multiple inheritance and sophisticated
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method combination mechanisms allow for greater sharing than many other
approaches. New control structures are built using macros and functional arguments.
A more detailed paper on this approach is in preparation.

7. DATABASE ACCELERATOR

Our work with Profs. Reif and Sodini on the database accelerator has been
progressing very well. J. Wade and P. Osler have finished a detailed "data sheet" ior
the full 1024 line database accelerator. In working out the details of this specification,
numerous changes were made from the original architecture proposed earlier. These
changes were forced by pitch matching requirements of the final layout and pin count
and power distribution considerations. A few changes were also included to improve
the performance of the database accelerator in certain situations, especially when used
in caching applications.

A 64-line version of the CAM has been designed and is about to be sent for
fabrication. It will provide a validation of the circuit techniques used and give us some
more realistic parameters before beginning the full design-this fall. Furthermore, it-will
be used in a small (256-1024 line) board being designed by P. Osler to validate the
overall approach. This small board will allow us to do-preliminary studies of the
microcode required by the CAM, and greatly speed up our simulations. He has
completed-the overall design of this board, and has implemented a custom chip thatwill
replace the general glue logic of the board. The complete design will be done this
summer.

We have also investigated the use of the database accelerator to speed- up
simulations. Since our CAM words are capable of holding don't cares in addition to
zeroes and ones, we can use each word to represent a minterm of a logic equation.
When a match operation is performed against a word with current values of the inputs,
the result of the match will be the value of the minterm. Since we can match against all
of the lines in the CAM in a single-cycle, all the minterms are evaluated in parallel; To
explore this approach B.-H. Lim has developed a simulator that makes use of -the
databaze accelerator to evaluate logic equations. Using the design goal of 90 nsec
minor cycles, his results indicate the logic simulator will run at about 10 million gates-per
second on modest sized examples.

8. X-WINDOWS

As part of the Common System project, we are consid.-". the adoption of the X-
Window System protocol as the mechanism for impler , .r interfaces. The
desire is that any interactive application, running on an,. :;ie, should be able -to
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display its windows on any-other machine. The X-Window System is fully implemented
for both the C and Argus environments under Unix, but no X support for the Lisp
environment on Symbolics 3600s exists.

Thus, a version of the X-Window System server has been implemented in LIsp for the
3600. This allows X programs running on Unix machines- to display their windows on
3600s. An interesting f.ature of the implementation is its use of multiple processes; all
IJhix-based server imp!ementations are single-threaded. The use of multiple processes
considerably simplifies various multiplexing and demultiplexing tasks. The existing
Symbolics window system is currently used* to emulate the semantics of X-Windows.
That is, each X-Window is implemented as a true window in the Symbolics window
system. However, the two systems are fundamentally incompatible in several respects.
For example, the Symbolics window system does not- fully support output to partially
obscured windows, but X does, and many X applications depend on this functionality.
In the future we intend to reimplement the server, building a complete X environment
inside a single Symbolics window. This will not only allow us to implement the X
semantics precisely, but should result in significantly higher performance as well.

The other half of the problem is to allow applications- written: forthe Symbolics window
system to display on remote screens, on both Unix and- Symbolics machines.
Hopefully, this can be accomplished, transparently to the applications, by defining a
"remote screen" flavor on which application windows are instantiated. This is preferable
to defining a completely new window interface, and- having- to rewrite existing
applications to run in the new environment. A design for the remote screen mechanism
is currently underway, and some preliminary implementation work has been performed.
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Logic-Level Timing Simulator," Harris Corporation, Melbourne, FL, August

13. Terman, C. and Arnold, J. "Prsim: A Multiprocessor Implementation of a
Logic-Level Timing Simulator," Bell Laboratories, Holmdel, NJ,
October/November 1985.

14. Terman, C. and Arnold, J. "Prsim: A Multiprocessor Implementation of a
Logic-Level Timing Simulator," ICCAD '85, Santa Clara, CA, November
1985.
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15. Terman, C. and Arnold, J. "Prsim: A Multiprocessor Implementation of a
Logic-Level Timing Simulator," Digital Equipment Corporation, Hudson,
MA, March 1985.

16. Ward, S. "The L Architecture," The Third Annual MIT/Siemens
Conference, Munich, Germany, March 3-4, 1986.

17. Ward, S. "The Roots of Chaos," IBM Review. February 1986.

18. Zippel, R. "Schema: An Architecture for VLSI CAD," IBM Research
Center, Yorktown Heights, NY, October 18, 1985.

19. Zippel, R. "Schema: An Architecture for VLSI CAD," ICCAD '85, Santa
Clara, CA, November 20, 1986.

20. Zippel, R. "Schema: An Architecture for VLSI CAD," Intel Corporation,
Santa Clara, CA, November 21, 1986.

21. Zippel, R. "Schema: An Architecture for VLSI CAD," Schlumberger Palo
Alto Research Center, Palo Alto, CA, November 22, 1986.

22. Zippel, R. "Schema: An Architecture for VLSI CAD," Industrial Liaison
Program Symposium, Santa Clara, CA, January 29,1986.

23. Zippel, R. "Schema: An Architecture for VLSI CAD," Texas A & M
University, College Station, TX, April 16, 1986.

24. Zippel, R. "A New Approach to CAD Software in Schema," Texas
Instruments, Dallas, TX, April 17, 1986.

25. Zippel, R. "A New Approach to CAD Software in Schema," University of
California, Berkeley, CA, May 7, 1986.

26. Zippel, R. "A New Approach to CAD Software in Schema," Stanford
University, Palo Alto, CA, May 8, 1986.

27. Zippel, R. "The MIT Database Accelerator," Stanford University, Palo Alto,
CA, May 9, 1986.

Theses Completed

1. Baek, H. "Parallel Retrieval Algorithms for Semantic Nets," S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, April 1986.

2. Blair, M. "A Simulator For The L Architecture in Common Lisp," S.B.
thesis, MIT Department of Electrical Engineer ig and Computer Science,
Cambridge, MA, May 1986.

3. Bradley, E. "Logic Simulation on a Multiprocessor," S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, June 1986.

4. Byun, B. "A Cached File System for Distributed Workstations," S.B. thesis,
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MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1986.

5. Chen, D. "DYALOG: A Functional Block to Gate Level Compiler for Semi-
Custom Integration," S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, June 1986

6. Clamen, S. "Debugging in a Parallel Lisp Environment," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, June 1986.

7. Courtmanche, A. "MultiTrash, A Pa. ',fl Garbage Collector for
MultiScheme," S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, February 1986.

8. Davon, M. "Partitioning Digital LSI Circuits for Parallel Simulation," S.B.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1986.

9. Dinsmore, K. "Performance Measurement Techniques for Multiprocessor
Systems," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, June 1986.

10. Douglas, D. "A High Performance Interface for a 40-Bit Machine on the
NuBus," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, June 1986.

11. Duff, D. "A Computer-Aided ALU Topology Generator," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, June 1986.

12. Frazier, G. "Analysis of Algorithms to Partition NMOS Circuit Designs for
Testing Programs," S.B. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, June 1986.

13. Granger, L. "Lisp-Based Tests and Diagnostics for the M.E.F. Circuit
Switch," S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, June 1986.

14. Gray, S. "Using Futures to Exploit Parallelism in Lisp," S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, June 1986.

15. Joseph, R. "An ECL Implementation of a RISC Architecture," S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
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Mechanism for Parallel Execution of Schemg," S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, June 1986.

17. Kukolich, S. "Towards a Machine Independent Compiler System," S.B.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, june 1986.
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18. Lau, W. "Lexical Analysis of Noisy Phonetic Transcriptions," S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, February 1986.

19. Levitin, S. "MACE: A Multiprocessing Approach to Circuit Extraction," S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1986.

20. Lim, B. "Logic Simulation Using a Content-Addressable Memory System,"
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1986.

21. Magnani, A. "A VLSI, Sub-Ten Nanosecond, 32-Bit Carry Chain for a Full
Adder," S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, June 1986.

22. Maimone, W. "Metacaching in Object Oriented Architectures," S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1986.

23. McDowell, R. "Architecture-Specific Code Optimization with a Machine-
Independent Code Reorganizer," S.M. thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, June
1986.

24. Osborne, R. "Modeling the Performance of the Concert Multiprocessor,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1986.

25. Shephard, T. "A Hardware Simulator Employing a Charge-Based Model
for MOS Digital Circuits," S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, June 1986.

26. Solden, S. "Implementing Signal Wave Forms as First-Class Objects in
CAD Tool, Schema," S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, June 1986.

27. Spicer, R. "Simulation of Digital MOS Circuits via Charge Analysis," S.B.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1986.

28. St. Pierre, M. "A Simulation Environment for Schema," S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, June 1986.

29. Teagarden, N. "Porting Schema to the Texas Instruments Explorer," S.B.
thesis, MIT Department of Electrical Engineering and Computer Science,
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30. Wang, A. "Exploiting Parallelism in Lisp Programs with Side Effects," S.B.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1986.

31. Ward, D. "Digital Telephone Answering Unit," S.B. thesis, MIT Department
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of Electrical Engineering and Computer Science, Cambridge, MA, June
1986.

32. Willison, P. "Lisp Data Structure for the "L" Architecture," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, June 1986.

33. Wong, M. "A Combining Omega Network: Performance vs.
Implementation," S.B. and S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, June 1986.

Theses in Progress

1. Ayres, A. "TBA" S.M. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected May 1987.

2. Hoffman, C. "Linguistic Foundations for an Algebra System," S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected December 1986.

3. Ku, S.-L. "A High Level Microcode Development System," S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected December 1986.

4. Ma, M. "Efficient Message-Based System for Concurrent Simulation,"
Ph.D dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected September 1987.

5. Miller, J. "Multischeme: A Parallel Processing System Based on MIT
Scheme," Ph.D dissertation, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected May 1987.

6. Nussbaum, D. "A Framework for Real-Time Graphics on a
Multiprocessor," S.M. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected September 1986.

7. Nuth, P. "A Processor for MultiLisp," S.M. thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, expected
September 1986.

8. Osler, P. "A Prototype Content Addressable Memory System," S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected December 1986.

9. Powell, M. 'To Be Determined," S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, expected May 1987.

10. Seda, S. "Compacting VLSI Layouts Containing Octagonal Geometry,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected December 1986.

11. Sieber, J. "To Be Determined," S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, expected May 1987.
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12. Spacek, M. "A Network-Based Real-Time Interactive Simulation," S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1986.

13. Williams, B. "Principled Design Based on Qualitative Behavioral
-Descriptions," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected May 1987.

14. Wolfe, J. "TI NuBus to IBM PC/AT Bus Converter," S.B. and S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected December 1986.
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1. INTRODUCTION

The Systematic Program Development Group is currently working on two related
projects, the Larch Specification System and the Reve Term Rewriting System. The
work on Larch has been supported primarily by DARPA, and the work on Reve primarlly
by the NSF.

2. LARCH

The Larch Project is a collaborative effort between MIT's Laboratory for Computer
Science and DEC's Systems Research Center. The project is developing both a family
of specification languages and a set of software tools to support their use. The support
tools include language-sensitive editors and semantic checkers based on a powerful
theorem prover. The goal of the project is to explore the application of precise
specifications to the development and maintenance of software. Several assumptions
have influenced the directions taken by the Larch Project.

" Local specifications. Behavioral specifications of program modules will be
useful in the near future. No conceptual breakthroughs or theoretical
advances seem to be needed. Rather, we need to use what we already
know to design usable languages, develop software support tools, and
educate system designers and implementors.

" Error detection. The process of writing specifications can be as error-prone
as the process of programming. Therefore, it is important to check
specifications thoroughly for errors. There are two ways to detect errors:
human inspection and mechanical analysis. The Larch languages are
designed to make it easy to write readable specifications, and formal
specifications written in Larch havc an advantage over informal
specifications in Zhat they can be checked rnechanicaliy for many common
errors.

" Scale. Specification methods must remain useful even when there are
many requirements to be recorded in a specification. Methods that are
entirely adequate for one-page specificatiors may fail utterly for hundred-
page specifications. It is essential that large specficati'ns be composed
from small ones that can be understood separately, ard that the task ofunderstanding the ramificatiorns of tlleir combination be manageable.

" Incremental con9lt/,ction. Large specificaticns, like large programs, must
be constructed incrernentally. Furthermore, many of the benefits of any
kind of specification come during the process of constructing ihe
specification: the very act of peciiicatian sheds light on what is being
specified. The procesi of careful specification encourages prompt
attention to inconsistencios, omissions, and ambiguities; and it often results
in-a.better understanding of the problem.

" Incompleteness. Most of the important analyses of specifications must
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occur while they are still incomplete. Most specifications are unfinished
during most of their useful lifetime. Consequently, it is essential to reason
about and to check unfinished specifications. Many finished specifications
are still incomplete. Sometimes this incompleteness is caused by
abstraction from details that are irrelevant for a particular purpose; for
example, time, storage usage, and functionality might be specified
separately. Sometimes, however, it is a symptom of an oversight in the
design or specification process. A specification checker should be able to
distinguish between oversights and intentional incompleteness.

* Tools. Tools have an important role to play in the specification process.
The number of tedious and error-prone tasks associated with maintaining a
substantial body of formal text in a consistent state is a serious bar to the
practical use of formal specifications. Tools can assist in managing the
sheer bulk of large specifications, in browsing through selected pieces, in
detecting errors, in deriving interactions and consequences, and in
teaching a new methodology. Languages designed to exploit powerful
tools may be quite different from pencil-and-paper languages.

* Reusability. It is inefficient to start each specification from scratch. We do
not want to keep reinventing the specifications of integers and sets - or
even of priority queues and bitmaps. We need a repository of reusable
specification components that have evolved to handle the common cases
well, and that can serve as models when we are faced with uncommon
cases. The collection should be open-ended and include application-
oriented abstractions, as well as mathematical and implementation-oriented
ones.

* Language dependencies. The environment in which a program is
embedded, and hence the nature of its observable behavior, is likely to
depend in fundamental ways on the semantic primitives of the
programming language. Any attempt to disguise this dependence will
make specifications more obscure to both the component's clients and its
implementors. On the other hand, many of the important abstractions in
most specifications can be defined independently of any programming
language.

Implementation independence. A good specification strikes a careful
balance between restrictiveness and generality. It tells the implementor
what service to provide, but does not place unnecessary constraints on
how it is provided. In this way it allows the implementor as much flexibility
as is consistent with the users' requirements. And it tells users just what
they can expect from a module, including how that module deals with
exceptions and boundary conditions. Without a specification, all that exists
is the code, and it is unclear what effects modifications to the code will
have on its behavior.
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2.1. The Larch Family of Specification Languages

The Larch Family of Specification Languages is based on a two-tiered approach to
specification. Each Larch specification has components written in two languages: one
designed for a specific programming language, and another common to all
programming languages. We call the former Larch interface languages, and the latter
the Larch Shared Language.

The Larch Shared Language is used to specify language-independent abstractions
that are useful for specifying module interfaces. Its role is similar to that of abstract
models in some other styles of specification. It has a simple semantic basis and allows
substantial checking. An introduction and reference manual [3], and a large set of
examples [4], have been published.

Each Larch interface language deals with what can be observed about the behavior of
programs written in a specific programming language. Its simplicity or complexity is a
direct consequence of the simplicity or complexity of the observable state and state
transformations of the programming language. Descriptions of two interface languages,
Larch/CLU and Larch/Pascal, are contained in [5]. Two further interface languages, one
for concurrency and one for Modula-2, are under development and are discussed
below.

It is too soon to draw any strong conclusions about the .utility of Larch in software
development. We have written a significant number of Larch Shared Language
specifications. On the whole, we were pleased with the specifications, and with the
ease-of constructing them. While writing them, we uncovered several design errors by
inspection; we are encouraged that many of these errors would have been uncovered
by the checks called for in the language definition. However, until we have more
experience with automated semantic checking, it is impossible to know how helpful
these checks will be.

We have just begun to write substantial specifications in Larch interface languages.
Our experience leads us to be optimistic. In particular, we have been pleased with the
Larch style of two-tiered specification. Several benefits arise from our ability to factor
Larch specifications, both into shared and interface components, and also into separate
traits and module specifications within these components. We find that parts of a
factored specification are easier to reuse, and that an entire specification is easier to
comprehend since its novel features are clearly distinguished from familiar features
,present in related specifications.
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2.2. An Editor for the Larch Shared Language

Over the last few years we have developed a systematic approach to designing and
writing Larch Shared Language specifications. In particular, we have designed and
implemented a syntax/semantics-directed specification editor that guides the user
through the specification process. The editor provides the following capabilities:

* Templates. The Larch editor generates templates for the components of a
specification. To write a specification, the specifier simply fills in these
templates. Templates remaining in an incomplete specification remind the
specifier of what information is required to complete the specification or to
resolve inconsistencies in the specification.

Flexible notation. Most programming and specification languages, together
with their associated editors, provide a fixed set of symbols (such as + or *)
that can be used as infix operators; users of these languages can introduce
other operators, which they must write using prefix notation. The Larch
editor does not prejudge which symbols specifiers will want to use.
Instead, it allows them to introduce operators using mixfix notation; thus
specifiers can introduce natural notations such as <x,y> for an ordered pair
or A[n] for an element of an array.

" Redundant information. The Larch editor generates redundant information
that makes a specification easier to read. Some of this information takes
the form of "syntactic sugar" that makes a formal specification look more
like ordinary English. Some takes the form of information replicated at
crucial points throughout a specification. In all cases, tha Larch editor
relieves specification writers of the burden of typing extra information for
the benefit of specification readers.

" Error prevention and detection. Our syntax-directed approach to editing
prevents errors in the format of a specification. The Larch editor also
supplies automatic type and semantic checks that ,elp specifiers catch
other mistakes early. Experience indicates that seemingly superficial errors
are often indicative of serious underlying confusion, and catching them
early is a valuable service.

" Automatic inferencing. Most programming languages and language
processors use declarations supplied by the user to detect errors in a
program. Yet programmers often find it tedious to create the reclundant
information required by these declarations. The Larch editor aids specifiers
by inferring, ihsofar as possible, declarations for variables and operators
from the use of those variables and operators.

This past year, S. Garland has increased the capabilities of the Larch editor and
improved its user interface so that it is now a useful tool for cre, ting specifications,
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2.3. Analysis Tools

The design of the Larch family of specification languages was strongly influenced by
the goal of checking specifications. We decided that it would be a mistake to rely only
on the syntax and type checking found in many "implementations" of specification
languages. Checks based on the meaning of specifications seemed crucial. Towards
this end we have developed a state-of-the-art theorem prover based on term rewriting
systems (see the following discussion of Reve).

At present, our system (Reve 2.4) enables us to check the consistency of an
equational theory associated with a specification. Next year, we plan to implement
additional aids that will help check whether two specifications are independent of each
other, or whether the action of an operator has been specified fully.

Our approach to theorem proving is based on the goal of limiting, as much as
possible, interaction between the theorem prover and its users. This is a consequen 9

of our desire to embed the theorem prover in another program that analyzes
specifications. Users of the specification analyzer should be spared the trouble of
having to learn very much aboi,' how the theorem prover works. The goal of limiting
user interaction with the theorem prove. l.ads us to trade machine time for user time.

Where possible we want to perform our analyses in "real time" so as to alert the
specifier to anomalies as s'f)n as possible. it is particularly useful to alert the specifier
immediately to an inconsister.cy between the part of the specification currently being
written and parts of tl,- spec,;icatior, supplied earlier. Failure to do so increases the
likelihood that the specifier will wastec considerable effort traveling down an unproductive
path. To this end, we -ave ocquired a Vax 8600 for use as a theorem-proving server.

2.4. Concurrency

This past year, J. Guhag has worktd with J. Horning at DEC's System Research
Center to define and use a new Larch/Conrurrent interface language. Our approach
has beer to handle concuiiency, wvh;ch is implemented in different ways on different
systems, in an inierface language. We have been pleased that the design of the Larch
Shared Lafiguagu has upported this work on concurrency without any need for
modification.

In speciying coticurrency, we make a distinction between atomic and non-atomic
actions. The key property of an atomic action is that of serializability" ior ei/ery
concurrent execut'on of a set of atomic au.tions there exists a sequential execution of
the same actions with the same net effect. An itomic procedure, which executes a
single atomic action, is similar to a sequential procedure in that states between t ie
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invocation of a procedure and its return cannot be observed. Therefore we can specify
them using pre- and post-conditions corresponding to the start and finish of the atomic
",-tion.

Many procedures in concurrent environments are inherently non-atomic, and we
specify them as a fixed sequence of actions. These actions may be named; in
particular, the initial and final actions are given reserved names. The specification thus
consists of a set of conditions on the actions. The following example specifies one
condition that holds for all actions between the first and final action, and one condition
that holds only the final action:

procedure DoUpdate ( d: UpdateSet, us: UpdateSet
modifies at most [d)
each action ensures

dpre (-- dpost dpre  us

final action returns ensuring
us c d

We have applied the Larch/Concurrent interface language to specifying the
synchronization mechanisms for Topaz environments and to specifying a global name
server. Writing these specifications guided the design of the interface language and
also provided some insight into the practical difficulty of specifying concurrency. The
first specification is complete and currently in use, and the second is still in progress.

In both cases, the Larch/Concurrent specifications proved to be more comprehensible,
and 't., place fewer unnecessary restrictions on implementations, than did previously
existing operational specifications. They also uncovered previously undetected errors in
the operational specifications.

2.5. Larch Interface Languages

Larch interface languages are programming-language dependent. Everything from
the modularization mechanisms to the choice of reserved words is influenced by the
programming language. At present, there are two moderately well-developed Larch
interface languages, Larch/CLU and Larch/Pascal. A detailed description of the
semantics of an early version of Larch/CLU is given in [12]. A detailed description of
Larch/Pascal has yet to be written. However, a discussion of the style of Pascal
programming that Larch/Pascal is designed to support is contained in [9].

While the semantic bases of Larch/Pascal and Larch/CLU are considerably more
complicated than that of the Larch Shared Language, their static semantics are
considerably simpler. In the Shared Language, there are a large number of
mechanisms for building one specification from another and for inserting checkable
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redundancy into specifications. Corresponding mechanisms are not present in interface
languages. We wish- to encourage a style of specification in which most of the
programming-language-independent complexity is pushed into the Larch Shared
Language. We feel that specifiers are less likely to make serious mistakes in this
simpler domain. Furthermore, it is easier to provide machine support that will help
specifiers catch the mistakes that they do make. Finally, by encouraging specifiers to
put effort into Shared Language specifications, we increase the likelihood that parts of
specifications will be reusable - not only for different specifications written in the same
interface language, but also across specifications written in different interface
languages.

The semantic bases of Larch interface languages tend to mirror the semantic bases of
the programming languages from which they are derived. In general, this means that
the semantics of an interface language is rather complex. D. Hinman is working on the
design of a Larch/Modula-2 interface language and on a formal definition for the
semantics of this interface language. -His work will provide a- model for defining the
semantics of other interface languages, being less tied to the specific semantics of the
underlying programming language than was the earlier formal treatment of the
Larch/CLU- interface language.

3. THE REVE TERM REWRITING SYSTEM

The availability of automatic tools for reasoning about Larch specifications is essential
to. our specification approach, and has influenced the design of Larch itself.
Accordingly, we have. devoted considerable effort to the further development of Reve
[2], a, theorem prover for equational theories. We are currently using Reve to verify the
consistency of specifications written in-the Larch Shared Language. Reve is also in use
in approximately thirty university and industrial laboratories in the United States and
Western Europe.

3.1.. Reve-2.4

The Reve Term Rewriting System includes a robust implementation of, the, Knuth-
Bendix [7] completion procedure, partial support for inductionless induction using- the
Huet-Hullot' meihod' [6], and a laboratory environment for rewriting and' unifying terms.

The current release, Reve 2.4, of Reve incorporates the following--new features:
o Associative-Commutative, Operators. Reve 2.4 handles associative-

commutative operators in a fully integrated fashion. Its matching,
unification, and completion algorithms automatically check for these
operators and- invoke the proper procedures to handle them. It employs a.
new. unification procedure that is based on the work of K. Yelick (see
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below); its completion procedure is based on that of Peterson and Stickel
[11]. Using Reve 2.4, we have been able to complete many sets of
equations that could not be completed previously in Reve.

* Orderings. In Reve 2.3, the user interface to Knuth-Bendix was greatly
simplified by the development of new ordering procedures. These
procedures compute all the ways in which an ordering (used to prove the
termination of a rewriting system) can be extended to order a new equation
into a rewriting rule. Thus, where the RDOS [8] of Reve 2.2 required the
user to be fairly knowledgeable about orderings, the RDOS of Reve 2.3
and Reve 2.4 presents the user with a complete list of possible actions [1].
Reve 2.4 also provides a new ordering based on polynomial interpretations
of operator symbols. This ordering is significant because it provides one of
the few methods that can be used to prove the termination of rewriting
systems for associative-commutative operators.

Automatic Orderings. Our ability to compute a complete set of extensions
for an ordering allows us to decide whether that ordering can be extended
to complete a set of equations, and it allows us to construct automatically
the extension if it exists. This automatic ordering greatly reduces the
amount of interaction needed to complete a set of equations. In the worst
case, it must search a set of extensions that grows exponentially with the
number of operators in the rewriting system. But Reve 2.4 uses several
techniques designed to reduce the average time-required to order a set of
rules, and extensive experimentation has convinced us of the practical
utility of our implementation.

Critical Pairs. Reve 2.4 uses a new method for deciding what pair of rules
to use next to compute critical pairs. It keeps a list of pairs of rules for
which critical pairs have not yet been computed. When a request comes
for the next pair of rules to use, this list is sorted by some metric (currently
the combined size of the left-hand sides) and the smallest is returned. In
some completions involving- large numbers of rules, this can result in
significant savings. It is also conceptually simple and easy to change by
changing the sorting criterion.

We plan to extend Reve by adding unification and matching algorithms for equational
theories other than the empty theory and the associative-commutative theories. Our
immediate plans are driven by the need to handle equations that have arisen in
attempts to use Reve to reason about specifications of programs.

3.2. Unification

K. Yelick (13] has designed a method for combining equational unification algorithms
to handle terms containing "mixed" sets of function symbols. For example, given one
algorithm for unifying associative-commutative operators, and another for unifying
commutative operators, her algorithm provides a method for unifying terms containing
both kinds of operators. She proved that the method is consistent, complete, and
terminating for a class of theories called the confined regular theories.
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She is working jointly with J. Zauhary to extend her unification algorithm to
combinations of sorted, rather than just unsorted equational theories. By making use of
sort information, they can relax some of the restrictions on the equational theories and
further optimize the unification process. She is also working with J.-P. Jouannaud of the
Universite de Nancy on equational unification for-data types.

J. Zachary is continuing an investigation into the pragmatics of incorporating data
abstraction into the paradigm of logic programming. His research has focused upon the
design of a new programming language, called Denali, that provides data abstractions
similar to CLU clusters. Whereas a CLU cluster defines a set of abstract objects and
provides a set of operations to manipulate these objects, a Denali cluster defines a set
of terms and provides a set of predicates to manipulate these terms. The predicates
are defined using Prolog-style Horn clauses.

Each Denali cluster provides a means of unifying pairs of the terms that it defines. In
Prolog, all-terms are unified using classical unification [10] because no interpretation is
placed upon the function symbols that compose them. Abstract data types, in contrast,
associate meanings with the function symbols they introduce. -For example, the ,two
terms k+3 and 5, while not unifiable in the classical sense, can be unified by the
substitution <x gets 2> when regarded as integers.

Although an implementation of Denali can provide unification algorithms for built-in
abstractions, the programmer is responsible for coding algorithms that unify pairs of
user-defined terms. One of Zachary's goals is to make Denali powerful enough to
express these user-defined unification algorithms. Since it is a difficult problem in
general to devise unification algorithms, Denali provides several features that render the
programmer's task more tractable. For example, Denali clusters can provide restricted
sets of terms, or they can restrict the pairs of terms they will unify; such restrictions can
make it easier to develop an appropriate unification algorithm.
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1. RESEARCH OVERVIEW

The Theory Group continues to be vital and prolific. Principal research areas are:
* algorithms: combinatorial, geometric, graph-theoretic, number theoretic

* cryptology

* computational complexity

* distributed computation: algorithms and semantics

* randomness in computation

* semantics and logic of programs

* VLSI design theory.

Group members were responsible for over one hundred publications during the past
year, as well as dozens of public lectures around the world. The reader may review the
individual reports and the bibliography and lecture list that follows for further
descriptions of the year's activities.

The following major research accomplishments merit highlighting:
1) Goldreich and Micali's proof that all problem's in NP have "zero-

knowledge proofs". As a consequence, any cryptographic protocol that is
correct with respect to a very weak adversary can be automatically
transformed into an equivalent protocol correct in the most adversarial
scenario [17].

2) Goldwasser and Kilian's efficient probabilistic algorithm for generating
certliied primes numbers [20].

3) Leighton's minimax grid-matching algorithm and its application to average
case analysis of algorithms for bin packing, dynamic allocation and wafer-
scale integration [34], [12].

4) Meyer et al.'s analysis of polymorphic types in programming and the
negative consequences of the 'type' is a type assumption [10], [36], [37].

2. FACULTY AND RESEARCH ASSOCIATES

Baruch Awerbuch
Awerbuch has been working on designing efficient and reliable distributed protocols.

He studied issues related to complexity of different distributed network protocols such
as synchronization and deadlock resolution, as well as some classic graph-theoretic
problems, like Breadth-First-Search and Spanning Tree. He also worked on
cryptographic protocols for implementing simultaneous broadcast networks.

Research on network synchronization has provided a simple and efficient
methodology for developing simple and efficient protocols in an asynchronous network.

199



THEORY OF COMPUTATION

This was achieved by developing a communication protocol, referred to as
synchronizer, which transforms an arbitrary synchronous protocol in such a way that the
resulting protocol runs correctly on an asynchronous network. The synchronizer is, in
effect, a compiler of high-level synchronous algorithms on a low-level asynchronous
machine. The proposed synchronizer is proved to be optimal as far as its time and
communication requirements are concerned. It also yields improvements for existing
problems, i.e., distributed Breadth-First-Search and Maximum Flow.

The research on distributed Breadth-First-Search algorithms was conducted jointly
with R. Gallager (MIT). This problem arises in relation with the efficient routing of
messages towards a certain destination node. A number of algorithms have been
discovered whose complexities are close to optimal. Another graph problem that was
investigated was the problem of constructing (distributedly) a Spanning Tree in the
network. An optimal algorithm for this problem was found.

Research on detection and resolution of deadlocks in a communication network was
conducted jointly with -Micali. Deadlock occurs if the amount of work that the network
attempts to perform requires more resources than the network actually has. As a result,
different network transactions get stuck in the middle, since no transaction can get
enough resources to proceed to its completion. Efficient solution of this problem would
result in improved performances of communication networks, and would prevent
wasting precious resources like communication bandwidth and memory space. The
main contribution of this research is a-new protocol for-deadlock resolution, which deals
with the most general form of deadlocks. Its complexities in communication, time, and
memory requirements are optimal.

Cryptographic protocols in unreliable networks were investigated jointly with Chor,
Goldwasser and Micali. The main problem being studied was implementing
simultaneous networks, where the abilities of potential adversaries are limited. Many
fundamental protocols (i.e., coin flipping, contract signing, etc.) can be implemented
quite easily in simultaneous networks. The protocol which was developed simulates
simultaneous network by a non-simultaneous network, provided that the number of
adversaries is not too big.

Awerbuch plans to continue research in distributed algorithms and communication
protocols. He is mainly interested in efficient algorithms for practice-oriented problems.
In particular, he plans to work on protocols for implementing atomic access to shared
registers for asynchronous system of processes and on hierarchical routing schemes-in
networks. Another-problem he plans to work on is the development of modular ways of
describing distributed algorithms.
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Benny Chor

Chor worked on various aspects of randomized agreement algorithms in unreliable
distributed environment. He studied the implementation of simultaneous broadcast in
Byzantine environment (joint work with Goldwasser, Micali, and Awerbuch). Together
with Merritt (MIT) and Shmoys, he developed protocols for distributed consensus in
constant expected time with improved fault -tolerance in various synchronous and
asynchronous failure-by-omission scenarios. Chor wrote a survey paper (jointly with
C. Dwork (IBM-SJ)) on randomized algorithms for fault-tolerant distributed agreement.

Chor investigated VLSI implementations of exponentiations in finite fields of
characteristic two, which is the computational bottleneck of a public-key cryptosystem
that he designed in his thesis with Rivest. In addition he worked on improving schemes
for extracting unbiased bits from weak sources of randomness. He also worked on
better lower bounds for probabilistic communication complexity (continuing past work
with 0. Goldreich).

Peter Elias

Two simple-minded data-compression algorithms have been analyzed which permit
immediate encoding of each message without delay or knowledge of the statistical
characteristics of the message source [13]. Receiver and transmitter need only agree in
advance on an indexing of the possible messages by the positive integers and on a
sequence of (variable-length) binary codewords which represents those integers, no
one of which is the beginning of another. In the algorithm simplest to implement, the
transmitter encodes each message into the codeword which represents the total
number of messages sent since it last occurred. The data structure required is simply
an array which stores in index order the counter reading at the-most recent occurrence
of each message; an implementation could run very fast. A somewhat better scheme,
with much more complex data structure requirements, encodes each message into the
codeword which represents the number of distinct messages sent since its last
occurrence. It has also boen analyzed by Bentley, et a. If a good set of codewords is
chosen to represent the integers then either scheme can do almost as well on any finite
sequence of text as would an off-line Huffman encoding which measured the
frequencies of the letters in the sequence-and designed a code to match, providing that
the information per letter of text is not too small: for example, if the text is taken to beta
sequence of words rather than letters. Other adaptive on-line schemes can do better,
but at-added costs in complexity, both of concept and of necessary data structure.

Oded Goldreich

Goldreich has been mainly interested in two topics: zero-knowledge proofs and
software protection. In addition he improved the Goldwasser-Micali-Rivest signature
scheme, and have been working with Chor on developing better schemes for extracting
unbiased bits from-weak sources of randomness.
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Together with S. Micali and A. Wigderson (UC-Berkeley), he has demonstrated the
generality and wide applicability of zero-knowledge proofs, a fundamental notion
introduced by Goldwasser, Micali and Rackoff (Toronto). Zero-knowledge proofs are
probabilistic and interactive proofs that efficiently demonstrate membership In a
language without conveying any additional knowledge. So far, zero-knowledge proofs
have been known for some number theoretic languages in the intersection of NP and
Co-NP. Under the assumption that encryption functions exist, it is shown that all
language "' NP possess zero-knowledge proofb. This result is used to prove two
fundameni, nrq.ms in the field of cryptographic piotocols. These theorems consist
of standard and efficient transformations that, given a protocol that is correct with
respect to a very weak adversary, output a protocol correct in the most adversarial
scenario. Using no assumptions, zero-knowledge proofs for both graph isomorphism
and graph non-isomorphism, are presented.

Software protection is one of the most important issues concerning computer practice.
The problem is to sell programs that can be executed by the buyer, yet cannot be
duplicated and/or distributed by him to oiher users. Goldreich made the first steps
towards a theoretic treatment of software protection, by distilling and formulating the key
problem of learning about a program from its execution, and by presenting an efficient
way of executing programs (i.e., an interpreter) such that it is infeasible to learn
anything about the program by monitoring its executions. Current cryptographic
techniques can be applied to keep the contents of the memory unknown throughout the
execution, but are not applicable to the problem of hiding the accesr- pattern. Hiding the
access pattern efficiently is the essence of new solution. It is shown how to implement
(on-line) t fetch instructions to a memory of size m by making tmr actual accesses, for
every fixed c>O. A reasonable scheme that protects against duplication follows.

Goldreich served on the program committee of Crypto85 conference.

Shafi Goldwasser

Goldwasser has done research in two areas: computational number theory and the
study of interactive proof systems.

Goldwasser and Kilian devised a new probabilistic primality test which outputs a
"short" (deterministic polynomial time verifiable) proof of correctness of its assertions of
primality and compositeriess. Thus its assertions of primality are certain rather than
being correct with high probability (if a fair coin is used) or dependent on unproven
assertions as in the tests of Miller, Solovay-Strassen, and Rabin in that its assertions of
primality are certain, rather than being-correct with high probability. The test terminates
in expected polynomial time on all but at most an exponentially vanishing fraction of the
inputs of every-length.
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This result shows that:
e There exist an infinite set of primes which can be recognized in expected

polynomial time.

* Large certified primes can be generated in expected polynomial time (all
previous methods were heuristics).

Under a very plausible condition on the distribution of primes in "small" intervals, the
proposed algorithm can be shown to run in expected polynomial time on every input.
This condition is implied by Cramer's conjecture. The methods employed are from the
theory of elliptic curves over finite fields.

Goldwasser and Sipser examined the relative power of two interactive proof systems
generalizing NP. An interactive proof system is a method by which one party of
unlimited resources, the "prover", can convince a party of limited resources, the
"verifier," of the truth of a proposition. The verifier may toss coins, ask repeated
questions of the prover, and run efficient tests upon the prover's responses before
deciding whether to be convinced. This extends the familiar proof system implicit in the
notion of NP in that there the verifier may not toss coins or speak, but only listen and
verify. Interactive proof systems may not yield proof in the strict mathematical sense:
the "proofs" are probabilistic with an exponentially small, though non-zero chance of
error.

Two notions of interactive proof system have been defined. One, by Goldwasser,
Micali, and Rackoff permits the verifier a coin that can be tossed in "private" i.e., a
secret source of randomness. The second, due to Babai requires that the outcome of
the verifier's coin tosses be "public" and thus accessible to the prover.

Goldwasser and Sipser show that the two systems are equivalent in power with
respect to language recognition. This result has implications on the ease of design of
cryptographic protocols, as interactive proof systems provide a useful framework for
studying the correctness of cryptographic protocols.

Goldwasser has co-organized an NSF sponsored workshop on the Mathematical
Theory of Security, which was held in Endicott house in the past summer. She is
currently on the program committee of Crypto 86.
Leonard S. Heath

Heath completed his PhD in computer science at the University of North Carolina in
August, 1986 [26]. He has worked on the book embedding problem, which is related to
the realization of arrays of VLSI processors -fault-tolerantly. He has developed
algorithms for embedding various classes of graphs in books [27], [28]. Recently, Heath
and Istrail (Wesleyan University) have obtained an efficient algorithm for embedding a
graph of genus g in a book of 0(g) pages [29]. This disproves an implicit conjecture of
Bernhart and Kainen that the page number of genus g graphs is unbounded.
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Heath will continue research into approaches for fault-tolerant computing. He hopes
to develop approaches that are both theoretically sound and practical.

Tom Leighton

The highlight of the year is the joint work with P. Shor (MSRI) and E. Coffman (Bell
Labs) on the minimax grid matching problem and its application to the average case
analysis of algorithms for such problems as bin packing, dynamic allocation and wafer-
scale integration. The work also turned out to have applications to some planar
matching problems, possibly to testing pseudorandom number generators and to some
problems in mathematical statistics. Leighton spoke about some of this material at last
year's review, and is in the process of finishing off the related papers now.

Leighton is continuing work on channel routing with Berger, D. Brown (U. Colorado),
and M. Brady (U. Illinois). They are in the process of improving the bounds and
algorithms for channel routing in two or more layers. The results are not yet practical,
but are definitely getting closer. The last "factor of two" from the channel widths
produced by the algorithm has been eliminated, and the focus is now on the additive
terms.

Leighton is also continuing work on the development of algorithms for integrating two-
dimensional arrays on wafers that contain faults. He is looking at both worst case and
average case models, and is optimistic that recent results will prove to be practical.
Leighton is working with a UROP student over the summer to implement the most
recent algorithms on realistic problems.

In the coming year, Leighton hopes to return to earlier work on the problem of
efficiently routing messages in a fixed connection network, an increasingly important
problem in parallel computation and an old favorite. The problems in this area have
mostly been solved "theoretically" but most of the solutions are inefficient for small-
values of N (say N 220), which of course is where all the action is. It would be nice to
find a theoretically sound and practically efficient scheme for routing messages in a high
,bandwidth, low diameter network such as the hypercube.

Leighton is also planning to work on the design and analysis of ethernet protocols
which work well on average. Currently, most ethernet systems use a protocol called
exponential backoff to decide when to retransmit a message that got garbled because
of simultaneous transmissions. While this has worked reasonably well in practice so
far, there is very strong evidence that the protocol will start to fail dramatically as the
traffic on typical ethernets continues to increase. He has an excellent candidate for
replacing exponential backoff, and are currently trying to prove that it will work, even for
very high levels of message traffic. The experimental evidence is very encouraging and
already Hastad (who will postdoc in the' Math Dept.. next year) and Leighton have
proved some fairly positive lemmas concerning performance.
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By far the biggest project (both recently and in the coming year) is Leighton's book on
"An Introduction to the Theory of Networks, Parallel Computation, and VLSI Design."
The book is based on the course that he has taught for the last three years on parallel
computation and VLSI design, and is planned to be usable as a textbook and a
reference text for people working in the field (probably a hopeless combination). So far,
about 100 pages have been written.

Charles Leiserson

Leiserson has continued his work on volume-universal networks and now has several
improved designs. One simple network contains only n small switches for a network
with n processors and is a generalization of the Benes network. He and Greenberg
have discovered good message-routing algorithms for this and other volume-universal
networks. He has also developed with Maggs a PRAM-like abstraction of volume-
universal networks. The new model, called a distributed random-access machine
(DRAM) allows the communication requirements of an algorithm to be effectively
measured.

Leiserson has also been working with Ishii on the semantics and timing analysis of
clocked circuits, and with Kilian and Kipnis on understanding the power of multiple-pin
interconnections. He was the program chairman for the recent Fourth MIT Conference
on Advanced Research in VLSI, the proceedings of which is now a book from MIT
Press. He also won the Best Presentation Award for his paper on fat-trees at the 1985
International Conference on Parallel Processing.

Nancy Lynch

Lynch's research is on theoretical aspects of distributed computation. This involves
design and analysis of distributed algorithms, proofs of lower bounds, and formal
modeling of distributed algorithms and systems.

A major effort was a system modeling project, with collaborator Dr. M. Merritt (AT&T
Bell Labs), in the area of distributed database concurrency control and resiliency. This
area is of critical importance to distributed computing, but the work was previously
described in hundreds of unrelated research papers, with no common framework to aid
in comprehension. Lynch and Merritt developed a satisfactory common framework, and
used it to present and verify, an important exclusive-locking algorithm for concurrency
control and resiliency. They are now extending the results to many other algorithms.

Other work involved specifying properties that can be guaranteed by (nonserializable)
highly available replicated database systems. Another project, joint with student
M. Tuttle, involved establishing a basic model for concurrent computation which could
be used in carrying out hierarchical correctness proofs for distributed algorithms. Work
with students B. Coan, J. Lundelius and A. Fekete involved determining the costs of
solving various problems of reaching consensus in fault-prone distributed networks.
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For further details and references, see the report of the Theory of Distributed
Computation Research Group.

Albert R. Meyer

Meyer's research focuses on the semantics and logic of programming languages. He
recently solved an open problem of some years' standing about axiomatic semantics of
programs [38]. His joint paper with Reinhold [37] analyzes the differing criteria desired
or expected of typechecking disciplines and establishes that the appealing 'type of all
types' concept of polymorphic type discipline violates many of these criteria. Meyer also
gave an invited lecture on these issues at the 1986 ACM Symposium on Principles of
Programming Languages. For further information on specific research topics, see the
references [40], [39], [10], [36], [9], and the personal reports of his students Breazu-
Tannen and Reinhold (working on type theory), and Bloom (on concurrency).

Meyer supervised two weekly research seminars, one on semantics and logic of
concurrent processes (jointly with Lynch) and another on types in programming (jointly
with Trakhtenbrot). Both seminars were attended by faculty from several local
universities as well as MIT. He was Program Chairman of the newly organized IEEE
Symposium on Logic in Computer Science held June 16-18, 1986. He continues as
Editor(-in-Chief) of the journal Information and Control, and is an Editor of a major
Handbook of Theoretical Computer Science to be published in 1987 by North-Holland.

Silvio Micali

One focus of Micali's research has been on the use of randomness for proving
theorems. Micali and coauthors have explored new avenues for efficiently proving
theorems that would allow one to handle more theorems than in the traditional "NP"
framework. So far, for example, it was not known whether a "prover", even having
infinite power, could quickly convince a polynomial-time "verifier" that two given graphs
are not isomorphic. These investigations resulted in a new, probabilistic and interactive
way-of proving theorems. For example, this way is powerful enough to allow an efficient
and interactive verification of graph non-isomorphism. Micali intends to determine the
power of the theorem-proving procedure and, more generally, to determine what
theorems can be proved in any other efficient way.

Another focus is measuring and reducing the "amount of knowledge" conveyed by a
communication. Thisis-the basis of a rigorous and general study of the slippery-field of
cryptographic protocols. Of particular interest is a new "compiler-type" algorithm that
seems fundamental in the ndesign of cryptographic protocols with more than two
participants. This algorithm, given the specification of any protocol for totally honest
parties (which is usually trivial to design), outputs an alternative and equivalent protocol
that remains correct even if up to half of its participants deviate for their prescribed
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programs in an arbitrary (but polynomial-time bounded) way. Micali proposes to extend
his "compiler" to handle the case of two-party protocols as well.

He also proposes to develop theory in the field of asynchronous distributed systems
when all participants are reliabie. Here the adversary to defeat is the arbitrary arrival
time of messages. The only guarantee we have is that all messages will all be
eventually delivered. However, messages sent first may arrive later and we do not have
an upper bound the time that will take for a message to reach its recipient. Clearly,
finding robust good solutions in this extreme model will, a fortiori, imply having found
good solutions for more reasonable models.

Ronald L. Rivest

Goldman and Rivest have been investigating ways to improve the efficiency of
computing the maximum-entropy probability distribution, given a set of constraints (in
terms of expected values) for the unknown distribution. They are working on
improvements to a recent approach suggested by Peter Cheeseman (NASA), which is
similar in spirit to the fill-in-minimization problem encountered when solving sparse
linear systems. They expect that the techniques being developed will yield very
substantial improvements in the running time, in practice. (Some experimentation is
needed to validate their ideas on realistic examples since the running times are
exponentially sensitive to certain characteristics of the input.)

Rivest has invented three new algorithms for the control of a broadcast channel (of the
slotted-ALOHA type). These algorithms are called Bayesian Broadcast, Pseudo-
Bayesian Broadcast, and Recursive Pseudo-Bayesian Broadcast. The essential
characteristic of these algorithms is that each station will use Bayes' Rule to estimate
the probability, for each r, that exactly r stations have a packet to transmit in the next
time slot. Here each station receives feedback as to whether each slot was empty,
successful, or contained a collision. Experimental results (conducted by Michelle Lee),
show that the Pseudo-Bayesian Broadcast algorithm has significantly less delay than
previously published algorithms. It is also extremely simple to implement. (More
recently, J. Tsitsiklis (MIT) has proven that it is stable with a packet arrival rate of up-to
e-1 packets/slot.)

Rivest has worked with Bloom on "Abstract Al" -- the study of computational
mechanisms attempting to learn an environment into which they have been placed.
Theyderived conditions on the -environment which permit the environment-to -be learned
effectively.

With Sherman and Kaliski, Rivest has investigated the security of the Data Encryption
Standard (DES). Using a special-purpose board for computing DES quickly on an IBM
PC, they ran experiments to determine whether DES suffers from being a pure cipher.
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(Such a weakness would allow a very efficient attack to be mounted against DES.) They
found no such weakness.

David Shmoys

Shmoys has been studying several problems in fault-tolerant distributed computing.
One of the fundamental problems in this area is "Byzantine Agreement", where each
processor starts with a private input and at termination all processors that operate
correctly agree on an output that depends non-trivially on the input (i.e., if all correct
processors have the same input bit b, then the output bit is b.) Shmoys, in joint work
with Chor and M. Merritt (MIT), gave a family of protocols that terminate in constant
expected time while tolerating a linear fraction of the processors failing. The results
hold in a variety of computation models, both synchronous and asynchronous.
However, this algorithm tolerates only a benign type of failure, where messages may
not be delivered, but messages which arrive are correct. In separate work, Shmoys
also provided a family of protocols that could handle arbitrarily malicious behavior'by
faulty processors, but for this -approach to tolerate a linear fraction of faulty processors,
the expected completion time grows to log log n.

Shmoys also continued his investigations in the design of provably good heuristic
procedures for the solution of intractable optimization problems. The central notion in
this work is that of a dual approximation algorithm. A traditional (or primal)
approximation algorithm seeks a feasible but suboptimal solution for the problem where
the degree of suboptimality possible is bounded. A dual approximation algorithm seeks
a superoptimal but infeasible solution for the problem where the degree of infeasibility
possible is bounded. In addition to their immediate application, Shmoys has shown that
dual approximation algorithms are often useful in the design of primal approximation
algorithms. This general strategy was applied in the case of several scheduling
problems. For all of these problems the aim is to assign a given set of jobs to a set of
parallel processors, so that all jobs are completed as quickly, as possible. If the
machines run: at identical speeds, or if the processing requirement for each job varies
uniformly on different machines, Shmoys proved that there is a polynomial
approximation scheme, thereby showing that solutions arbitrarily close to the optimum
can be obtained. In addition, Shmoys showed that if the processing times varied
arbitrarily from machine to machine, then there was an algorithm that produced
solutions within a logarithmic factor of the optimum.

Michael Sipser

Sipser has been continuing. his work on questions in complexity theory. Recent
results include:

o the equivalence of public-coin and private-coin interactive proof, systems
joint with Goldwasser [19] described in her section above,
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* a connection between expander graphs and the relative power of time
versus space [43]. This second result shows that explicit construction of
certain kinds of expander graphs would enable their use as "randomness
magnifiers" for simulating randomized computations.

Current emphasis is on developing new methods for proving the inherent
computational complexity of a variety of problems in different settings. This Fall,
M. Sipser will conduct a seminar to survey the latest results and to discuss further
directions.

B.A. Trakhtenbrot

Trakhtenbrot's research focus is on computability, sequentiality, and invariance of
functionals on the one hand, and the language constructs which are able to express
them on the other hand. The goal is to develop a unifying approach based on the theory
of typed lambda-calculus and logical relations. Current plans are about the comparative
study of different approaches to sequentiality:

* the semantical approach (as in earlier work with his students);

* the syntactical approach (as in the rewriting paradigm);

* interpretations used in the theory of concurrency.

3. STUDENTS AND VISITORS

William Aiello
Aiello has been working with Goldwasser and Hastad on open problems concerning

Arthur-Merlin games and Interactive Proofs (IP). Recently, they constructed an oracle
which separates the class of languages recognized by IP from the polynomial hierarchy.
In particular, this implies that relative to our oracle more languages can be recognized
by IP's (or Arthur-Merlin games) with a polynomial number of interactions than with a
constant number. This in turn gives evidence that the unrelativized statement is also
true. We also hope to show that Babai's methods for proving that the AM hierarchy
collapses at the second level-are optimal.

Dave i3arrington

1arrington has been finishing up his Ph.D. research under Sipser in the Math
department. He has been studying branching programs, a model of computation where
the settings of Boolean input variables determine a path through a directed acyclic
graph to a final node which accepts or rejects the input. He showed that branching
programs of constant width and polynomial size are much more powerful than
previously believed --- they can simulate all of the parallel complexity class NC1

(Boolean circuits of fan-in two and depth O(log n).
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Further work has shown that this unexpected power comes from the ability of
branching programs of width at least five to represent non-solvable permutation groups.
Recently, with Denis Therien of McGill University, Barrington has used the connection
between branching programs and finite monoids to give new characterizatlons of
important subclasses of NC1. He has also applied his main result to show that Boolean
circuits of width four and polynomial size can recognize exactly NC1.

Barrington has been working with complexity classes with very constrained resources,
such as NC1 or log-space Turing machines. These classes can serve as an important
laboratory for developing insights about more general computations and the big
questions --- what do non-determinism, randomness, parallelism, or non-uniformity add
to computational power?

In Fall, '86, he will take a faculty position in the Computer and Information Sciences
department of the University of Massachusetts, Amherst, but expects to be a frequent
visitor to MIT.

Bonnie A. Berger

Berger and Leighton have worked on achieving better bounds and algorithms for
channel routing. Channel routing plays a crucial role in the development of automated
layout systems for integrated circuits. Jointly with Brady (U. Ill.) and Brown (U. Col.),
they have developed algorithms for routing channels with several layers [3]. They not
only have achieved substantial new results, but have provided a unified framework in
which many previously known results can be obtained.

For the unit-vertical-overlap model, they have developed a 2-layer channel routing
algorithm which uses at most d+O(d112) tracks to route two-point net problems and
2d+O(d I/2) tracks to route multipoint nets. They have also shown a d+fl(log d) lower
bound for routing two-point nets on 2 layers even when unrestricted vertical overlap is
allowed; hence, their upper bound is nearly optimal even in a more general setting.
Moreover, they have demonstrated the robustness of their algorithm by showing how it
can be used to obtain the known bounds for the Manhattan and knock-knee models.

Finally, they generalized the algorithm to unrestricted multilayer routing and used only
d/(L-1) + 0(d I/2) tracks for two-point nets (within-O(dl /2) tracks of optimal) and d/(L-2) +
0(d12) tracks for multipoint net problems (within a-factor of (L-1)/(L-2) times optimal).

Meyer and Bloom are studying the denotational semantics of parallel and
nondeterministic processes. Dana Scott's very successful models for the semantics of
sequential, deterministic programs do not extend naturally to the more general domain.
There are a number of proposals for a replacement; Meyer and Bloom are investigating
several of these models.
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Meyer and Bloom are also investigating the complexity of the operational semantics of
Milner's SCCS. They have proved that the problem of deciding if an arbitrary program
can take a single step is not recursively enumerable, under some barely reasonable
assumptions about the set of actions. They are in the process of extending this result to
completely reasonable assumptions.

Ravi B. Boppana

Boppana has worked on proving lower bounds for several restricted models of
Boolean circuits. His Ph.D. thesis [8] on this topic was completed in May 1986.

The first circuit model studied is monotone circuits. A major development appeared in
[A. A. Razborov, "Lower bounds for the monotone complexity of some Boolean
functions," Dok. Ak. Nauk. SSSR 281 (1985), pp. 798-801 (in Russian). English
translation in Soy. Math. Dok. 31 (1985), pp. 354-357] which showed that monotone
circuits detecting cliques in graphs must have superpolynomial size. Alon and Boppana
[2] show that the lower bound can be improved to exponential size.

The second model is that of Boolean formulas. [L.G. Valiant, "Short monotone
formulae for the majority function," J. Algorithms 5, 363-366, 1984] shows that the
majority function has short monotone formulas; his construction uses the general
technique of combining independent copies of probabilistic formulas to amplify the
performance of the formulas. Boppana [4] showed that the amount of amplification
obtained by Valiant is actually best possible.

Lagarias and Boppana [,j studied the computational complexity of checking a relation
versus evaluating a relation. Hirschfeld and Boppana [6] wrote an expository paper on
pseudorandom number generators and their relationship to complexity theory. Hastad
and Boppana [5] studied approximation properties of constant depth circuits.

Boppana plans to continue work in Boolean circuit complexity. In particular, he will
investigate whether the recent lower bounds for monotone circuits can be extended to
the nonmonotone case.

Val Breazu-Tannen

Breazu-Tannen has studied equational type disciplines (see [9]) and X-calculus with
least fixpoint operators. He served as organizer for the TOC "Types in Programming"
seminar where he also made several presentations.

His-current interests include:
* Conservative extension theorems in typed X-calculi; Polymorphism and

second-order X-calculus; Dependent types and the calculus of
constructions; Relations between type disciplines.

• ,-calculus with equational type disciplines (e.g., types satisfying domain
equations); Type coercion.
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* X-calculus with least fixpoint operators.

* Type theory; Higher-order categorical logic (cartesian closed categories,
topoi); Higher-order algebraic theories.

* Logical relations and representation independence theorems.

* Learning about concrete programming environments to which the ideas of
the above fields of theoretical investigation apply.

Breazu-Tannen's current research focuses on conservative extension theorems about
programming language data types. The history of programming language design has
seen a progressive addition of powerful features such as higher-order types, recursively
defined types, polymorphic types, dependent types and others, giving rise to more and
more complex type disciplines. Such features are theoretically modeled by various
typed X-calculi. Adding a new feature corresponds to seeing the new calculus as an
extension of an old one. If the old calculus is consistent, is the new one too? A
stronger question is: are all old program phrases that were not provably equivalent in
the old calculus still not provably equivalent in the extended calculus? (i.e., is the
extension conservative?) An affirmative answer provides formal evidence for the
orthogona ,ty of the new feature with respect to the the old ones, a well-established
desideratum in programming language design. Both model-theoretic and proof-
theoretic techniques have been used to establish conservative extension, e.g., finitely
typed X-calculus is conservative over any first-order equational theory, but untyped
X-calculus is not.

Jonathan Buss

Buss' research has been in the area of relativized complexity theory. Previous work in
this area has been largely concerned with polynomial-time-bounded machines. In the
case of space-bounded machines, there are several possible models in the literature,
none of which is entirely satisfactory. In particular, results connecting time and space
do not relativize in the previous models. These definitional problems have obstructed
progress in this area.

Principal work has been the formulation of- a new model for alternation oracle
machines. In the new model, the connections between time and space bounds
provided by alternation (ALOGSPACE=P, AP=PSPACE) hold- relative to any oracle.
When the model is reduced to the case of deterministic machines, a slightly different
model of relativized time and a new model of relativized space result. These
deterministic models are better-behaved than the standard models. Several results on
the simulation of time by space and the simulation of multihead Turing machines hold
for all-oracles only in the new model. This work is reported in his doctoral thesis [11].

Continuing work is concerned with the implication of the new model for log-space
hierarchies and with relativized probabilistic machines.
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Tom Cormen

Cormen has continued his work in VLSI designs of concentrator switches, building on
earlier joint work with Leiserson in designing a fast hyperconcentrator switch.

Addressing the problem of pin boundedness, Cormen has designed an (N,m,o()-partial
concentrator switch based on a recent technique for sorting on a mesh. This switch

uses the earlier hyperconcentrator switch as a subcircuit, requires at most 2N 1/2 + 1/2
log N data pins per chip, has a = 1-o(NP'4 /m), and can be packaged in three

dimensions with volume O(N 12). The switch can route any set of k < am bit-serial

messages from input wires to output wires. A signal incurs at most 7/2 log N + 0(1)
gate delays in passing through the switch.

Paul Feldman

Feldman has been working with Micali on cryptographic protocols even before
transferring to MIT from Harvard this year. One result of this collaboration was an
algorithm for reaching Byzantine agreement in constant expected time whenever fewer

than a third of the processors are faulty (14]. Another result, an efficient scheme for
verifiable secret sharing, is expected to be included as part of his doctoral thesis.

Feldman obtained some results about connecting networks [15] working with Joel
Friedman and Nick Pippinger at IBM-San Jose.

Feldman has been interested in the field of interactive proof systems, and has shown

that if any prover can convince a polynomial time verifier about membership in a certain
language, then there exists a polynomial space prover that can do the same.

Andrew V. Goldberg

Goldberg has been working on network flow problems. He coauthored a paper [18]
that introduces a new method for solving a classical max-flow problem. Currently he is
looking at other network flow problems, including 0-1 flows, multicommodity flows, load
balancing, etc. His other-interest include parallel algorithms, parallel -architectures, and

complexity theory.

Sally A. Goldman

Goldman has been working with Rivest on theoretical aspects of artificial intelligence.
Specifirn.lly, they are studying the problem of calculating the maximum entropy

distribution satisfying a given set of constraints. These constraints inay be given by an

expert or discovered by a learning program. They have compared several methods from
the literature as well as beginning work on developing a new method. Their method
simplifies maximum entropy computations by adding extra constraints.

Ron Greenberg

Greenberg has continued his investigation of the fat-tree architecture for general-
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purpose parallel supercomputing. The randomized routing algorithm for fat-trees which
he developed with Leiserson demonstrates that fat-trees are universal routing networks
[21]. That is, in a VLSI model equating hardware cost with physical volume, any routing
network can be efficiently simulated by a ;at-tree of comparable hardware cost.

Johan Hastad

The two major topics of Hastad's researqh have been integer lattices and lower
bounds on circuit complexity.

The work on lattices consists of two different types of work. First applying old
techniques to new problems and secondly to find new techniques. In [22] the LLL
algorithm is applied to prove that encoding linearly related messages with RSA with low
exponent is insecure. In the area of new techniques the joint paper [24] proposes a
polynomial time algorithm which finds integer relations among real numbers. The
algorithm works in the model where real arithmetic can be done at unit cost.

The work on lower bounds for circuits has been concentrated on small depth circuits.
Hastad has established almost optimal lower bounds for small depth circuits computing
functions like parity and majority (23]. He has also proved that for any constant k there
are functions which have linear size circuits of depth k but which require exponential
size circuits for depth k-1. This work is included in his recently completed Ph.D. thesis
[25].

These lower bounds have implications for relativized complexity. With Aiello and
Goldwasser [1], Hastad has used similar methods to prove that there is an oracle A and
a language L(A) with the following property: L(A) is not in the polynomial time hierarchy
relative to A, but given the oracle A-it is possible to effectively prove membership in L(A)
using a randomized interactive proof.

Future plans include trying to prove lower bounds .for circuits with less severe
restrictions on the depth. For instance to prove that some explicit function is not in NC1.
He would also like to investigate further the notion of interactive proof.

Rafael Hirschfeld

The topics of Hirschfeld's research are pseudorandom number generators and
complexity theory. He has investigated necessary and sufficient conditions for the
existence of pseudorandom generators that cannot feasibly be distinguished from true
random sources, as well as the implications of the existence of such generators for the
relationship between deterministic and probabilistic computation. Boppana and
Hirschfeld [6] have written an expository paper on this and related work.

Alexander T. Ishii

Ishii, in joint work with Leiserson, has been studying the analysis of clocked multi-
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phase VLSI systems. Progress to date includes the development of a new semantic
model for the functionality of VLSI systems. Promising aspects of the model include
strong correspondence to widely held intuitive notions of functionality, and freedom from
a priori assumptions about the relationship between different clock phases. In addition,
study of the model has resulted in the identification of a number of clocking phenomena,
which raise questions about the ability of standard simulation and analysis techniques to
verify an optimally clocked circuit. It is hoped that continued study will result in the
formulation of an algorithm to compute provably optimal clock phases for any specific
VLSI system.

Burt Kaliski

Kaliski completed experimental research on the Data Encryption Standard (DES) and
studied applications of elliptic curves to cryptography.

The DES research, with Rivest and Sherman, involved the design, implementation
and testing of special-purpose hardware for an IBM PC to perform the 232 or more DES
encryptions per day necessary for a variety of statistical tests. In summer 1985, the
board was used to perform eight experiments, most of which confirmed expected
properties of DES (i.e., that it behaves like a set of randomly-chosen permutations). The
experiments also uncovered fixed points for the "weak keys" in DES.

Some of the most interesting recent developments in computational number theory
are related to elliptic curves. H.W. Lenstra's algorithm for integer factorization, and two
other related algorithms (by Rene Schoof and Victor Miller) all were published in the last
two years, following a century of theoretical development. The elliptic curve study, with
Rivest and Micali, and helpful insight from Goldreich, sought to apply the elliptic
logarithm problem to cryptography, just as several other hard problems (factoring,
discrete logarithm) have been applied. The main result is the construction of a
pseudo-random bit generator using elliptic curves. Two related results of independent
interest were also developed: a method of determining the order of an element in an
arbitrary abelian group, with negligible error; and an oracle proof method for the
simultaneous security of multiple bits of a discrete logarithm in an arbitrary abelian
group.

Future work will include the documentation of the special-purpose DES hardware, and
extensions of the results on elliptic curves. The latter may involve generalization to more
complicated algebraic structures, an attempt at a sub-exponential time algorithm for
computing elliptic logarithms, or the use of elliptic curves in "certifying" elements that
generate-a cyclic group.

Joe Kilian

Kilian's chief work has been a joint paper with Goldwasser [20] in which they apply the
theory of elliptic curves to solve some open problems relating to primality test'ng.

215



I

THEORY OF COMPUTATION

He is also working on a paper with Kipnis and Leiserson applying elementary group
theory to some problems concerning the power of multi-point nets.

Philip Klein

Klein has been studying parallel algorithms for language-theoretic and graph-theoretic
problems. He has revised his joint paper with Reif [30] on a parallel algorithm for
recognition of any fixed deterministic context-free language. Previously a parallel
algorithm existed for general context-free language recognition, but this algorithm was
slower and used many more processors.

For his Masters' thesis, Klein has developed, in collaboration with Reif, a new parallel
algorithm for finding a planar embedding of a graph [31].

Klein will continue to work towards developing new efficient parallel algorithms.

Shlomo Kipnis

During this first year at MIT, Kipnis worked with Leiserson on theoretical VLSI
problems. They tried to investigate multiple-pin nets, where each net may connect
more than two processors (chips). Attention was given mainly to networks that realize
some group of permutations among the chips. Together with Kilian some theoretical
results irom group theory were applied that characterize some networks.

Currently he is gathering the results on this topic into a paper with Leiserson and
Kilian. He intends to continue research in this direction and related VLSI problems.

Bruce Maggs

Leiserson and Maggs have shown that many graph problems can be solved in
parallel, not only with polylogarithmic performance, but with efficient communication at
each step of the computation. The communication requirements of an algorithm are
measured in a parallel random-access machine model called the distributed random-
access machine, which can be viewed as an abstraction of volume- and area-universal
networks such as fat-trees. In this model, communication cost is measured in terms of
the congestion across cuts of the machine. The graph algorithms are based on a
generalization of the prefix computation on lists to trees. These treefix computations,
which can be performed in a communication-efficient fashion using a variant of the tree
contraction technique of Miller and Reif, simplify many parallel graph algorithms in the
literature.

'Miller Maley

Maley continued his work on the mathematical foundations of wire routing. Using
ideas from algebraic topology, he began developing a theory of planar wiring under
homotopy constraints. This research aims to extend the scope of proposed algorithms
for single-layer routing and compaction of VLSI layouts. The new theory facilitates the
construction and rigorous justification of such algorithms.
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Seth Malitz

Malitz has established some surprising facts connecting measure- and graph-theoretic
properties of infinite graphs whose edges are represented by points on the real unit
square [35]. Future plans are to work with Goldwasser and Sipser on interactive proof
systems and with Bjorner (MIT Math.) on continuous analogues of finite lattices.

Yoram Moses

See the report of the Theory of Distributed Systems Group.

Cynthia Phillips

Phillips completed her Master's Thesis on space-efficient algorithms for computational
geometry [41] supervised by Leiserson. She is currently investigating several possible
topics for her Ph.D. research including parallel data structures, theory of VLSI and
parallel computation, and pseudorandom permuter circuits.

Satish Rao

Rao is continuing work on a Master's thesis (begun at Bell Laboratories) on finding
optimal separators for planar graphs. He currently is working with some success on
restricted versions of the problem, but hopes to eventually tackle the more general

problem.

Mark B. Reinhold

Dependent function types, which originated in the type theory of intuitionistic
mathematics, have recently appeared in programming languages such as CLU, Pebble,
and Russell. (A function has a dependent type when the type of its result depends upon
the value of its argument.)

In [37], Reinhold and Meyer investigate the consequences of assuming that there
exists a type of all types in a X-calculus with dependent function types. The type of all
types is the type of every type, including itself. When a language with dependent
function types is enriched with the type-of-all-types assumption, enormous expressive
power is gained at very little apparent cost. By reconstructing and analyzing a paradox
of Girard, they show that this combination leads.to several serious problems. The most
significant of these are that for such a language (1) typechecking is undecidable, and
(2) classical reasoning about programs is not sound.

The technical properties if X-calculus with-dependent types are complex, and Reinhold
is currently developing the basic theory of conversion and type-checking for such

languages in his Master's thesis.

Alan Sherman

Sherman, with Kaliski and Rivest, has been investigating the relationship between
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algebraic and security properties of cryptosystems [33], [32], [42]. Using special-
purpose hardware, they carried out a series of cycling experiments on the Data
Encryption Standard (DES) to see if DES has certain extreme algebraic weaknesses.
Their experiments show, with overwhelming confidence, that the set of DES
transformations does not form a group under functional composition. Their experiments
also detected fixed points for the so-called "weak-key" transformations, thereby
revealing a previously unpublished additional weakness of the weak keys.

Jeffrey Mark Siskind

Siskind's research interests have centered around three different topics, namely
silicon compilation from first principles, generalized phrase structure grammars, and
logic programming and constraint propagation.

Silicon Compilation: All present silicon compilers, including MacPitts, generate layouts
by using a set of predefined module generators. There are two fundamental problems
with module generators. First, they are capable of producing only fixed classes of
architectures. Second, they are technology dependent and require a significant effort to
retarget to new technologies. The new approach, like MacPitts, separates the silicon
compilation task into two phases, a translation from behavior to structure, and then a
translation from structure to layout. Unlike MacPitts however, the intermediate
structural format is a simple flattened network of transistors, rather than specifications
for specialized module generators. Experimentation is underway with two different
approaches towards the translation of this transistor network to efficient layout. The first
uses a divide and conquer min-cut placement algorithm followed by a combination of
Lee routing and slice and expand routing. The second more sophisticated approach is
based on planar graphs. This work is being pursued under the supervision of
Leiserson.

GPSG: Generalized Phrase Structure Grammars (GPSG) are a linguistic formalism
developed by Gerald Gazdar for describing natural languages. They consist of small
base set of context free grammar rules which are expanded by application of rule
schemas, metarule transformations, and feature agreement to form a much-larger set of
context free rules which can be used to parse sentences. Several approaches are
being-explored towards the goal of testing the accuracy and adequacy of this formalism
for both describing and parsing English. A GPSG grammar of about 100 rules has been
constructed which can -handle a fairly large subset of English. A system which expands
'this GPSG representation into a CFG representation has been constructed, and
produces around 6000-CFG rules for the above GPSG ruleset. The CFG rules are fed
into an-implemantationof the Earley parsing algorithm and run against a small corpus of
test sentences. This approach has proven to be very unwieldy and has prompted the
construction of two alternative systems. The first is a modification of the-Earley parser
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to handle feature agreement directly by using a unificatior algorithm internally avoiding
the need to expand the rule set. This alone is not sufficient as capability to handle
derived rules without expansion must be provided. The second approach is to use
Prolog based definite clause grammars which imply a depth first backtracking approach
rather than the breadth first approach of Earley's algorithm. This work is being pursued
under the supervision of Robert Berwick (MIT) and William Woods (Applied Expert
Systems, Cambridge, MA).

Logic Programming: Two different paths of research in logic programming have been
pursued until now. One path, centered around Prolog, provides unification and
chronological backtracking as its main tenants. The second path, that of constraint
propagation, focuses on dependency directed backtracking, but does not provide the
necessary data and program abstraction capabilities to form a useful programming
language. This research centers on a new language, Conlog, which merges the
concept of unification (for providing data and program abstraction) with constraint
propagation and dependency directed backtracking. As the new language is purely
functional, simple syntactic transformations allow Conlog to express the lambda
calculus as well, with the added benefit that many functions thus described are
reversible. There are two new features which the above framework supports. The first
is an extension of the dependency directed backtracking component to support
generalized search of the solution space for minima, maxima, etc., in addition to just
finding solutions. The second is a technique which is called intensional mode vs.
extensional mode predicates, which allow a way of delaying and trading off
computation. As a final benefit, viewing logic programming in the light of constraint
propagation allows an implementation of Prolog for fine grain massively parallel
Computer architectures.

Bob Sloan

Sloan's major research activity has been to analyze several definitions of security for
probabilistic public-key cryptosysterns. He has been working with Micali, and has
proved that some apparently distinct definitions are equivalent. His Master's thesis on
this topic is in preparation.

Mitch Wand

Wand has recently obtained results on the completeness of type inference systems,
extending-the line-of .work published in th -last three POPL conferences. These results
concern the completeness-of type inference systems, which infer type declarations from
programs without them. Wand was able to formalize the proof of completeness of the
basic system in a way which allowed easy extensions to more complex type systems
than had previously been considered. From this work, the following papers are in
progress:
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* A Simple Algorithm and Proof for Type Inference

* Deriving Typechecking Rules for Macros

* A Complete Type Inference System for Simple Objects with Inheritance

Su-Ming Wu

For his Master's thesis, Wu will work with Micali on algorithms for finding maximum
matchings in general graphs.
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1. :INDIVIDUAL PROGRESS REPORTS

Chris Clifton

C. Clifton's Master's-thesis on "Dynamic Load Balancing", supervised by N. Lynch and
F. Cristlan (IBM Almaden ;Research Lab) is nearingcompletion. This thesis presents-a
new model for load in a -computer-system which separates different types of processing
resources. This model is used to define the problem of load balancing in distributed
systems, and a simple algorithm for load balancing is given.

While at IBM, Chris developed a system which performed, load balancing on-line in a
cluster of IBM mainframe processors. This system looks at CPU, Memory, and I/O as
separate resources, and places tasks at different processors -so as to avoid overloading
any of these three resources.

B. Coan

During the past year,IVhaveworked on the following:

(1) "A Communication-Efficient Canonical Form for Fault-Tolerant Distributed
Protocols" [3]

Many fault-tolerant distributed protocols are known. Some of these require a large
(exponential) amount of communication. We present a general simulation of any
synchronous fault-tolerant consensus protocol by a communication-efficient protocol.
An important corollary -of -the simulation technique is a new communication-efficient
Byzantine agreement protocol that uses about half the number of rounds required by
the best previously-known communication-efficient Byzantine agreement protocol. Our
new protocol approaches the known lower bound for rounds to within a small factor
arbitrarily close to 1. The only known protocols which achieve the lower bound for
rounds use an exponential amount of communication.

(2) "Simultaneity is Harder than Agreement" (with C. Dwork)[5]

For many distributed problems, such as the distributed firing squad problem or the
Byzantine agreement problem, it is known that t+1 is a lower bound on the number of
rounds of message exchange required by any protocol that is resilient to t faults.
Because this is a worst-case lower bound, there may well be aprotocol that does better
much of the time. Such a protocol is said to be fast. In this paper it is shown that,
assuming fail-stop faults, there are no fast protocols-(either randomized or deterministic)
for the distributed firing squad problem or for the simultaneous weak Byzantine
agreement problem. These results contrast with known fast protocols for the eventual
,Byzantine agreement problem. The observed pattern is that 'problems which require
simultaneous termination of correct processors have no -fast protocols, while problems
which admit staggered termination of correct processors do have fast protocols. The
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impossibility results of this paper are for a benign failure model and therefore apply a
fortiori to more malicious failure models.

(3) "Transaction Commit in a Realistic Fault Model" (with J. Lundelius) [4]

We study the transaction commit problem under realistic timing assumptions. We
identify an almost asynchronous model, which we claim is more realistic than some
(synchronous) models that have been studied previously. In this model we give a
randomized transaction commit protocol based on Ben-Or's randomized asynchronous
Byzantine agreement protocol. The expected number of asynchronous rounds until our
protocol terminates is a small constant, and the number of failstop faults tolerated is
optimal. It is known that no deterministic protocol is possible in this model. We
motivate our definition of asynchronous rounds by showing that no protocol in this
model can terminate in a bounded expected number of clock ticks, even if processors
are synchronous. Defining asynchronous rounds allows us to make the performance
guarantee that after a sufficient number of useful messages have been delivered our
protocol will terminate.

(4) "Limitations on Database Availability When Networks Partition" (with B. Oki and
E. Kolodner) [6]

In designing fault-tolerant distributed database systems, a frequent goal is making the
system highly available despite component failure. We examine software approaches
to achieving high availability in the presence of partitions. In particular, we consider
various replicated-data management protocols that maintain database consistency and
attempt to increase database availability when networks partition. We conclude that no
protocol does better than a-bound we have determined. Our conclusions hold under the
assumption that the pattern of data accesses by transactions obeys a uniformity
assumption. There may be some particular distribution for which specialized protocols
can increase availability.

K. Goldman

I have been examining various algorithms for managing replicated data. The hope is
that through comparing these methods we can determine the basic mechanisms
needed to model replicated -data using the I/O Automata Model given by [18] and [17].
After doing so, it should be possible to prove properties of these methods and possibly
derive better methods for handling replicated data.

J. Lunoellus
This year my research concerned the impact of synchrony in distributed systems. I

worked on three different projects.

B. Coan and 1 [4] investigated the transaction commit problem under realistic timing
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assumptions. We described an almost asynchronous model that is more realistic than
some synchronous models that have been studied previously. We designed a
randomized transaction commit protocol for this model, based on Ben-Or's randomized
asynchronous Byzantine agreement protocol [2]. We proved that the expected number
of asynchronous rounds until our protocol terminates is a small constant, and that the
number of failstop faults tolerated is optimal. It is known that no deterministic protocol is
possible in this model. We also devised a new definition of asynchronous round that
allows us to make the performance guarantee that after sufficiently many useful
messages have been delivered, our protocol terminates. Additional justification for our
definition is provided by our proof that no protocol in this model can terminate in a
bounded expected number of clock ticks, even if processors are synchronous.

Another research effort was showing how a distributed system with synchronous
processors and asynchronous message delays can be simulated by a system with both
asynchronous processors and asynchronous message delays in the presence of
various types of processor faults [15]. Consequently, the result of [10], that no
consensus protocol for asynchronous processors and communication can tolerate one
failstop fault, implies a result of [8], that no consensus protocol for synchronous
processors and asynchronous communication can tolerate one failstop fault.

Finally, I also studied the problem of achieving consensus in various shared memory
models of computation [16]. The impetus to work on this problem was provided by the
manuscript [13]. I showed that there can be no fault-tolerant consensus protocol, for a
very weak notion of consensus, if memory cells cannot be read and written in one
atomic step. When atomic read/write is available, there is a maximally fault-tolerant
weak consensus protocol, and a strong consensus protocol that tolerates one fault --
both these algorithms are described. The final result in this paper showed that even if
atomic read/write is available, there is no strong consensus protocol that can tolerate
three faults. (The paper [14], which is a revised version of [13], extends this result to
show no protocol can tolerate two faults.)

N. A. Lynch

During this year, a theme has emerged in my work - that of trying to understand ways
of decomposing and combining distributed algorithms. A problem with much of the work
in this area so far has been that results tend to be isolated; it would be a great
contribution to provide useful methods for building distributed algorithms out of
subalgorithms. The methods I am interested in should be both rigorous and intuitive.

Of course, this is a very general goal. The actual day-to-da., work involves intensive
study of three specific application areas: distributed consensus, distributed concurrency
.control and distributed graph algorithms. In each area, I have been trying to organize

238



THEORY OF DISTRIBUTED SYSTEMS

and generalize the important ideas using various decomposition techniques, as well as
trying to discover new algorithms and lower bound results.

In the area of distributed consensus, I had a paper [22] at last summer's Symposium
on Principles of Distributed Computing, which unified, strengthened, and simplified a
large number of results in the recent literature about the impossibility of solving certain
consensus problems in particular graph networks. Also, I have been supervising work
by several Ph.D. students, on algorithms and lower bounds for consensus problems.
B. Coan has obtained a very interesting set of algorithmic results; he uses several kinds
of decomposition, including translating results from one model of distributed
computation to another, and allowing an algorithm to call distributed subroutines to
solve subproblems. J. Lundelius also uses translation ideas, in her case to obtain a
simple proof of a difficult impossibility result in the literature, by reducing another
problem, known to be unsolvable, to it. A. Fekete, a graduate student at Harvard, has
also been working with me on fast algorithms for approximate agreement.

Most of my effort this year has been devoted to concurrency control issues; nested
transactions seem to be indispensable as a basis for distributed programming
languages, and there has so far been no usable general theory developed. A major
project in progress, with M. Merritt, involves establishing a simple, rigorous and intuitive
model for concurrent transaction processing. We have "nearly" completed a grand work
which establishes the general model and proves correctness of some interesting
practical algorithms [18]. Since other people have also gotten quite interested in
applying this model to this work, we have also begun work with B. Weihl, M. Herlihy,
and students K. Goldman and S. Perl, on describing orphan elimination algorithms,
replicated data, and abstract atomic types. We should have more to report on this next
year.

A different style of work on concurrent processing has arisen from consulting work at
Computer Corporation of America, on the SHARD system. The SHARD system
manages replicated data in a way that yields high availability, in spite of unreliable
communication. The usual correctness condition, serializability, is not guaranteed,
however. Then the question arises as to exactly what this system does guarantee. We
give a partial answer to this question; for a particular kind of application (resource-
allocation), we prove interesting statements about the cost bound and fairness
properties which SWARD guarantees. It seems that this -type of system is likely to
become very important in real distributed database applications, and this work seems
very promising as a start to understanding what such a system can do.

In the area of distributed graph algorithms, I have been working with Leslie Lamport
recently, on a multi-level proof of correctness for a very difficult and well-known
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distributed algorithm, Gallager, Humblet and Spira's algorithm for finding a minimum
spanning tree. The main effort here is in disentangling the many ideas used in the
algorithm, so that they can be understood one at a time.

Closely related to all of the work described above has been work with student
M. Tuttle on models for distributed algorithms. We believe we have settled on a general
model which seems appropriate to all types of concurrent algorithms. In [17], we are
Usihg it to provide a multi-level correctness proof for a network resource aliocatloh
algorithm, but we are also using it elsewhere to describe concurrency control
algorithms, shared memory algorithms, dataflow algorithms, etc.

Some papers on older work ([1],[7]), were also submitted (or revised and resubmitted)
during this year.

Y. Moses

Y. Moses joined our group on September 30th as a post-doctoral fellow for a year. His
main research effort since then has been in understanding how reasoning about
knowledge can be used as an essential tool in analyzing and understanding complex
problems in distributed systems. He has since written two papers on the relationship
between simultaneous-actions and various states of knowledge in systems of unreliable
processors (the much studied but still mysterious subject of Byzantine agreement and
its variants).

The first paper [9] was written with C. Dwork, formerly from our group but now from
IBM Almaden Research center. A short abstract of the paper follows:

By analyzing the states of knowledge that the processors attain in an unreliable
system of a simple type, we capture some of the basic, underlying structure of such
systems. In particular, we study what facts become common knowledge at various
points in the execution of protocols in an unreliable system. This characterizes the
simultaneous actions that can be carried out in such systems. For example, -we obtain
a complete characterization of the number of rounds required to reach simultaneous.
byzantine agreement, given the pattern in which failures occur. From this we derive a
new protocol for this problem that is optimal in all runs, rather than just always matching
the worst-case lower bound. In some cases this protocol attains Simultaneous
Byzantine Agreement-in as few as 2 rounds. We also present a non-trivial simultaneous
agreement problem called bivalent agreement for which there is a protocol that always
halts in two rounds. Our analysis applies to simultaneous actions in general, and not
just to Byzantine agreement. The lower bound proofs presented here generalize and
simplify the previously known proofs.

The second paper [21], with M. Tuttle of our group, extends the analysis of the first
paper to the omissions model, again deriving efficient optimal protocols for
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simultaneous actions in cases that is possible, and carefully delineating the boundary at
which optimal protocols become computationally infeasible. A short abstract follows:

We study the problem of designing protocols that perform simultaneous actions in
systems of unreliable processors in an optimal number of rounds in all runs and not
merely matching lower bounds on performance in worst case runs. Simultaneous
actions are closely related to common knowledge. We develop clean and efficient
methods for determining what facts are common knowledge in several variants of the
omissions failure model of practical interest. These methods yield computationally-
efficient protocols for performing simultaneous actions in an optimal number of rounds
in all runs. Conversely, we are able to show that, in the slightly more malevolent
generalized omissions model, determining when common knowledge of many relevant
facts is attained is inherently intractable (assuming P is different from NP). Hence, no
optimal protocol for performing simultaneous actions in the generalized omissions
model can be computationally efficient. This shows that, in models at least as
malevolent as the generalized omissions model, common knowledge no longer directly
corresponds to the simultaneous actions that resource-bounded processors are able to
perform. In light of this, we suggest a notion of polynomial time common knowledge
which does correspond to-when simultaneous actions can be performed in systems of
unreliable, resource-bounded processors.

M. Tuttle

My work this year has been concentrated in two areas. First, I am finishing my
Master's thesis entitled "Correctness Proofs for Distributed Algorithms" in which the
problem of developing natural proofs of the correctness and complexity of distributed
network algorithms is addressed, where a "natural proof" is one that retains the flavor of
an explanation one might give to a colleague at the blackboard of how an algorithm
works. This work has been done in collaboration with my thesis advisor, N. Lynch. In
this thesis we formalize a model of computation called the input-output automaton. One
original aspect of this model is the division of process actions into input actions and
output actions, and with this partitioning of actions we are able to give a useful notion of
fairness. Using these automata we develop a style of verification that encourages
proofs involving several conceptual levels of abstraction and encourages a modular
decomposition of proofs.

Second, 1 am in the process of completing work with Y. Moses entitled "Common
Knowledge and Simultaneous Actions in Systems of Unreliable Processors." In this
paper we use the language of knowledge to study when processors in a distributed
system of unreliable processors can perform actions simultaneously. We are able to
completely characterize when certain types of simultaneous actions can be performed
in a distributed system in the presence of omission failures, and this characterization
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leads to computationally-efficient protocols for performing simultaneous actions in an
optimal number of rounds in all runs and not just matching lower-bound performance in
worst case runs. Conversely, we are able to show that, in the presence of the more
malevolent generalized omission failures, determining when common knowledge of
simple facts is attained is inherently intractable, and hence that optimal protocols for
simultaneous actions are computationally infeasible. This work has the effect of
pointing out subtle differences between the different models of failure in distributed
systems. In addition, this work suggests a notion of polynomial time common
knowledge which corresponds to when simultaneous actions can be performed in
systems of unreliable, resource-bounded processors.
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